LE FORUM MÉGASCIENCE DE L'OCDE

LE GRAND PROGRAMME SUR LE GÉNOME HUMAIN

ORGANISATION DE COOPÉRATION ET DE DÉVELOPPEMENT ÉCONOMIQUES
ORGANISATION DE COOPÉRATION ET DE DéVELOPPEMENT ÉCONOMIQUES

En vertu de l'article 1er de la Convention signée le 14 décembre 1960, à Paris, et entrée en vigueur le 30 septembre 1961, l'Organisation de Coopération et de Développement Économiques (OCDE) a pour objectif de promouvoir des politiques visant :

— à réaliser la plus forte expansion de l'économie et de l'emploi et une progression du niveau de vie dans les pays Membres, tout en maintenant la stabilité monétaire, et à contribuer ainsi au développement de l'économie mondiale ;
— à contribuer à une plus forte expansion économique dans les pays Membres, ainsi que les pays non membres, en vue de développement économique ;
— à contribuer à l'expansion du commerce mondial sur une base multilatérale et non discriminatoire conformément aux obligations internationales.

Avant-propos

Le Forum Mégascience a été établi le 1er juin 1992 par le Conseil de l'OCDE en tant qu'organe subsidiaire du Comité pour la politique scientifique et technologique. Dans le cadre du programme de travail de la Direction de la Science, de la Technologie et de l'Industrie, le Forum a pour but de faciliter un échange d'information et une discussion ouverte et approfondie sur des projets de mégascience actuels et futurs entre les gouvernements des pays Membres et les communautés scientifiques engagées dans la recherche scientifique à très grande échelle. C'est dans ce contexte que, d'une part, se sont tenues, de 1992 à 1994, six réunions d'experts dans des domaines scientifiques qui font un usage important de la mégascience et que, d'autre part, ont été dédiées les aspects «mégascience» de certains champs de recherche qui s'organisent autour de grands programmes. Les résultats de ces réunions et discussions sont publiés dans la série de publications du Forum Mégascience.

Dans le domaine des sciences de la vie, le Forum Mégascience n'a pu queouter des jalons. Son objectif était de saisir les enjeux et les nouveaux problèmes dus à l'essor de la coopération internationale autour de grands programmes définissant des problématiques de recherche communes qu'à l'utilisation accrue d'outils informatiques puissants et de réseaux. Ainsi le Forum a réalisé, pendant trois ans, une «veille» active sur l'évolution dans les domaines de la biodiversité, de la bioinformatique et de la recherche sur le génome humain, sans toutefois organiser réunion d'experts dans aucun de ces secteurs scientifiques.

Ce rapport a néanmoins été largement discuté par le Forum Mégascience en réunion plénière et à travers une consultation d'experts nationaux. Le volume est tout entier un rapport synthétique détaillé qui présente, à l'intention des décideurs politiques, la situation des recherches sur le génome humain. L'histoire de ce projet, vieux de moins de dix ans, éclaire l'étude de ses développements dans les différents pays. Le rapport s'attache à montrer le statut de ce nouveau champ de recherche, l'ampleur des moyens qui lui sont consacrés, les difficultés de la coopération et s'interroge sur l'adéquation du concept de mégascience pour caractériser ce domaine.

Ce livre, qui a été préparé par un expert-conseil, Dr. Bronwen Loder de Cambridge (Royaume-Uni), constitue ainsi une introduction à une discipline en pleine expansion, mais il est aussi et surtout un guide pour les responsables de la politique scientifique,
spécialement pour ceux qui sont chargés d'aider à la promotion de la coopération et/ou de la coordination internationale. Dans l'ensemble les informations contenues dans ce livre sont valables à la date de fin décembre 1994.

Ce rapport est publié sous la responsabilité du Secrétaire général de l'OCDE.

Table des matières

Résumé ... 7

1. Introduction ... 10
 Historique du Projet sur le génome humain (PGH) .. 10
 Le génome humain .. 12
 Apparition de maladies génétiques ... 13
 Les buts du PGH ... 13

2. Étendue et échelle de l'effort global sur le génome humain 16
 États Membres de l'OCDE .. 16
 En dehors de l'OCDE .. 33
 Commentaires .. 34

3. Progression vers les buts du PGH ... 34
 Achievement des cartes .. 34
 Obtention de la séquence ... 35
 Organismes modèles et cartographie comparative .. 37
 Informatique ... 39

4. Applications du Projet sur le génome humain ... 42
 Compréhension des maladies ... 42
 Diagnostic et dépistage .. 43
 Pathologie et thérapie .. 45
 Le Projet sur la diversité du génome humain ... 46

5. Portée socio-économique du Projet sur le génome humain 48
 Transfert de technologie .. 48
 Débats sur la propriété intellectuelle ... 51

6. Implications éthiques, sociales et juridiques .. 54
 Introduction ... 54
 Diagnostic et dépistage .. 54
RÉSUMÉ

Le Projet sur le génome humain (PGH) est une initiative mondiale visant à déterminer la structure de l’ADN humain et la localisation de tous les gènes. Le développement des techniques d’ADN recombinant au cours des 20 dernières années, et des avancées rapides dans la cartographie des chromosomes au cours des dix dernières, a conduit à proposer de cartographier et de séquencer le génome humain en entier – génome étant le terme utilisé pour décrire le matériel génétique contenu dans chaque cellule du corps humain. Cette tâche s’organise sur quatre axes majeurs : la construction d’une série de cartes du génome humain ; la détermination de la séquence complète de l’ADN humain ; le développement de moyens pour manipuler les données produites ; et le développement de technologies innovatrices nécessaires à la réalisation de Projet.

L’effort global sur le génome humain est constitué de nombreux programmes nationaux et supranationaux. Parmi ceux-ci, le plus grand est aux États-Unis – un programme commun soutenu financièrement par le Département de l’Énergie (DOE) et les Instituts nationaux de la santé (NIH) – avec un budget annuel de plus de 170 millions de dollars. Certains pays – comme le Canada, la France, le Japon et le Royaume-Uni – ainsi que l’Union européenne sont engagés de façon considérable, alors que d’autres pays de l’OCDE ont des programmes bien identifiés sur le génome humain, mais plus petits. En dehors de l’OCDE, la Russie est l’acteur principal pour le moment. Dans les grandes lignes, tous ces programmes ont des buts similaires bien que l’importance accordée à un domaine particulier soit variable, comme le sont les modes d’exécution et les réalisations à ce jour.

À l’occasion des renouvellements de programmes ou des révisions de leurs buts, la progression vers les objectifs généraux du PGH a été examinée au cours de la dernière année. En général, les progrès ont été plus rapides que ce qui avait été initialement prévu ; des améliorations technologiques ont permis des avancées rapides, dans la cartographie en particulier.

- Une carte génétique de marqueurs hautement informatifs, à meilleure résolution que prévu, est déjà disponible, quoique des vides restent à combler. Cela est dû au développement de nouveaux types de marqueurs génétiques (aux États-Unis) et à leur utilisation systématique (en France).
- Les cartes physiques de plusieurs chromosomes sont déjà achevées, ou presque. Une carte du génome entier est en bonne voie.
L’objectif de séquencer l’ADN à un coût de 50 cents US par paires de base sera atteint en 1996. Toutefois, la vitesse à laquelle l’ADN peut être séquencé doit être augmentée. Cela nécessite une amélioration des technologies, un accroissement des investissements ainsi qu’une augmentation du nombre de groupes impliqués dans le séquençage à grande échelle.

Il y a un nombre croissant de bases de données et d’outils informatiques pour les cartographies et les séquenciers du génome. Toutefois, il faut des améliorations continues si l’on veut se maintenir à jour avec les changements d’exigences.

La raison d’être du PGH a toujours été sa contribution potentielle à la compréhension des processus à la base des maladies humaines. Le projet accélère grandement le processus de découverte des gènes, et augmente ainsi le nombre des désordres qu’on peut diagnostiquer. La progression vers la thérapie est plus délicate, même si l’exemple de la mucoviscidose est encourageant. Quatre ans après la découverte du gène défectueux, on en est déjà non seulement aux essais de thérapie génique, mais aussi aux essais de traitements pharmacothétiques.

Les applications majeures du PGH concernent la compréhension des maladies, les diagnostics, les dépistages et la thérapie, mais ce n’est pas tout. On a aussi souvent discuté du Projet sur la diversité du génome humain qui vise à assembler une base de données, ouverte et durable, sur la génétique et les statistiques de l’espèce humaine.

On assiste déjà à des transferts de technologies et l’intérêt que l’on y porte est en augmentation. Au départ, on a pu remarquer qu’un grand nombre d’entreprises se sont impliquées dans des essais de thérapie génique. Par la suite, plusieurs entreprises de biotechnologie ont emprunté à l’un des applications du PGH se sont créées.

La question de la propriété intellectuelle (PI) a jailli lorsque le NIH a tenté de breveter des fragments de séquences d’ADN en 1991 (idée qu’il a finalement abandonnée). Cela a attiré l’attention vers bon nombre de problèmes potentiels : l’absence de tout accord international sur le partage des données ; l’opposition ferme souvent rencontrée, d’un point de vue moral, à l’idée de breveter l’ADN humain.

Très tôt, il fut décidé de définir quelles étaient les implications éthiques, sociales et juridiques du projet sur le génome humain et d’encourager les débats publics. Le projet, en son, ne souleva pas de nouvelles questions éthiques et sociales. En revanche, l’interprétation et l’application de ses résultats sont susceptibles d’en poser. De nombreux gènes de maladie vont être découverts et cela permettra de diagnostiquer les risques de plus en plus de maladies.

Les moyens d’utiliser les informations génétiques constituent une autre raison de s’inquiéter, surtout en ce qui concerne le dépistage, le diagnostic ou les choix de reproduction, et l’utilisation de ces données par les employeurs ou les compagnies d’assurance. Il faut réfléchir au droit à la confidentialité des informations génétiques personnelles et aux possibilités d’oppositions entre ce droit et celui des membres de la famille, des collègues de travail ou de la société en général. Il faut s’assurer qu’on ne force jamais quelqu’un à accepter des informations sur sa constitution ou son identité génétique qu’il ne désire pas connaître, en tout cas sans son consentement, même s’il est conforme à sa volonté.

Selon le poids accordé à différents critères, on peut considérer qu’autant le PGH comme un méga-projet, qu’autant la recherche comme facteur crucial, il est loin d’en être un. Il ne nécessite pas d’équipements centraux ni de coordination massive des scientifiques. Toutefois, il s’étend indubitablement à l’échelle du globe et il est unique.

Au début, le PGH présentait des défis redoutables et c’est pourquoi les agences de financement ont rapidement porté une attention considérable à la mise en place de collaborations et ont tout fait pour éviter des répétitions d’efforts. Les réunions, les ateliers ainsi que la part de la ressource des bases de données ont été fortement encouragés. Mais on n’a pas tenté de répartir le travail de façon formelle, comme cela avait été fait pour l’étude du génome de la levure.

L’Organisation du génome humain (HUGO) est une alliance de scientifiques qui a été créée pour épauler la coordination de la recherche sur le génome humain. Elle compte actuellement environ 700 membres, elle est d’ailleurs au bureau aux États-Unis, au Royaume-Uni, au Japon et en Russie, et elle agit dans de nombreux domaines, principalement dans l’organisation des ateliers sur le chromosome. Ces ateliers sont un moyen important de véhiculer les informations et d’encourager les collaborations.

Il existe de nombreuses collaborations éminentes et productives au niveau international entre scientifiques (qui se retrouvent dans le cadre de l’EHE). Les agences gouvernementales, gouvernementales, et leurs collègues, se tiennent au courant de façon mutuelle : la plupart font appel à des scientifiques du génome de deux pays lors des expositions de programme ou des réunions de leurs objectifs. Les agences internationales (à part HUGO) ont joué des rôles accessoires, sauf pour leur contribution aux débats sur l’éthique.

Le PGH est un projet global mais il n’est pas coordonné. Certains travaux se font en double mais cela est peut-être le prix à payer pour obtenir ce climat de collaborations fertiles qui règne actuellement. Le besoin de coordination scientifique se fait sentir dans le domaine des banques de données. La nécessité d’une coordination politique est présente dans le domaine de la propriété intellectuelle et du partage des informations.

On trouvera en annexe un glossaire qui donne la définition d’un certain nombre de termes ou d’expressions scientifiques et techniques, ainsi qu’une liste de sigles.
1. Introduction

Historique du Projet sur le génome humain (PGH)

Lorsque Watson et Crick ont découvert la structure de la double hélice en 1953, la possibilité de connaître la totalité des instructions génétiques semblait être un objectif scientifique impossible à atteindre. Il n’existait alors aucun moyen de séquencer l’ADN, même en courts fragments. La révolution de l’ADN recombinant, qui a commencé en 1973 et qui a permis d’isoler des gènes uniques, a incité le développement de puissantes techniques de séquençage, tout en permettant de cloner des morceaux d’ADN de plus en plus longs. En même temps, des améliorations spectaculaires dans les technologies de l’information ont permis d’envisager l’archivage et la recherche, le stockage et l’assemblage des données que le PGH générerait.

L’idée d’un PGH fut soulevée pour la première fois au milieu des années 80. Quelques généticiens tels que Walter Bodmer proposèrent l’idée d’un effort concerté pour cartographier le génome humain. L’Intitut du Département de l’Énergie des États-Unis (DOE) semble dater d’une assemblée, tenue en Utah 1984 dans un but tout autre, où un groupe de scientifiques commença à envisager le séquençage de tout l’ADN contenu dans le génome humain. Toutefois, la première proposition sérieuse de séquencer le génome humain eut lieu à une réunion organisée par Robert Sinheimer, alors chancelier de l’Université de Californie à Santa Cruz, qui était à la recherche d’un grand projet pouvant être basé à cet endroit. Il invita une douzaine d’experts mondiaux en génétique moléculaire pour tester leurs réactions à l’idée de construire un institut pour séquencer le génome humain. La plupart étaient sceptiques – à cette époque, le séquençage était encore lent et ondulé en erreurs – à part un ou deux, convaincus que cela était faisable, notamment Walter Gilbert. La communauté scientifique, loin d’exprimer un quelconque enthousiasme, ne semblait pas intéressée. En octobre 1985, l’intérêt provint d’un lieu inattendu – du DOE, en particulier de Charles De Lisi, le directeur du Bureau de la recherche sur la santé et l’environnement du DOE. Le DOE a un mandat, conçu dès les origines de la Commission à l’énergie atomique, pour étudier les endommagements bétaliens causés par une faible exposition aux radiations et autres risques environnementaux. Le DOE possédait de vastes ressources techniques et des équipements informatiques sans rival. Deux de ses laboratoires nationaux menaient des projets pour trier les chromosomes par flux et depuis 1983, l’un d’eux héberge Geunbank, la base de données américaine de séquences d’ADN. Suite à une réunion à Santa Fe en mars 1986, De Lisi et des collègues du DOE proposèrent la mise en place de « centres de génome » dans deux laboratoires nationaux et leur engagement dans le projet. Dans le contexte actuel, il est amusant d’évoquer la justification de De Lisi telle qu’il se la rappelait dans une émission de la BBC à la télévision (Horizon) diffusée en Janvier 1989 :

« Mon sentiment était que c’était une idée dont l’heure était venue. L’atmosphère était probablement comparable au type d’environnement auquel on devrait s’attendre en démathinant un projet tel qu’un lit lunaire. Ce n’était pas une proposition scientifique, en fait. C’était plutôt une proposition d’ingénierie ; c’était une proposition pour développer une ressource qui aurait une utilité générale en répondant à de nombreux projets scientifiques spécifiques. Il s’agit donc de développement de ressources de la même façon que le SSC – supercollécteur superconducteur – est une ressource pour les physiciens, ou les sondes spatiales des ressources pour les astronautes. »

Les jurys du NRC et de l’OTA firent appel à l’expertise de scientifiques en dehors des États-Unis. Au cours de leurs délibérations, le projet fut redéfini : il fut élargi de façon à intégrer d’autres objectifs, comme ceux des cartographies des liaisons de gènes humains, qui organisent les ateliers binomiaux de cartographie des gènes humains, et aussi pour inclure des organismes autres que l’homme. Un accent particulier fut apporté au développement des technologies : bien qu’il y eût besoin de somme relativement importantes en argent frais, il fallait s’assurer que celles-ci n’étaient pas illimitées et que l’efficacité et le bon rendement seraient à l’ordre du jour. Un large consensus sur les buts généraux du PGH fut atteint et ces derniers sont décrits plus loin.

Les rapports du NRC et de l’OTA furent tous deux publiés au début de 1988. La première réunion sur la cartographie et le séquençage du génome eut lieu à Cold Spring Harbor en avril de cette même année et c’est alors que fut conçu l’Organisation du génome humain (HUGO). L’idée de HUGO – une organisation internationale de scientifiques qui s’engagent à promouvoir la collaboration mondiale dans le génome du PGH – venait en particulier de Sydney Brenner, qui a également proposé le nom et un sigle heureux.

Le premier financement américain fut accordé au cours de cette même année fiscale. Déjà, d’autres discussions de programmes nationaux et supranationaux étaient en cours. La Commission européenne présentait sa proposition de programme intitulée « Médecine de prédiction » en 1983. Ce titre contribuait largement aux nombreuses vicissitudes que le projet endure, aux mains du Parlement européen et d’autres, avant d’être finalement adopté en été 1990 avec son contenu scientifique virtuellement inchangé. Au Royaume-Uni, le Conseil consultatif sur la science et la technologie (ACOST) nouvellement consti-
tut était à la recherche de nouveaux programmes ; Sydney Brenner et Walter Bodmer ont éveillé son intérêt pour le génome humain, ce qui a permis au Conseil de recherche médicale de recevoir des fonds pour s’engager dans un projet de cartographie du génome humain. D’autres pays ont peu à peu suivi ; chaque programme national avait ses propres éléments distinctifs mais dans l’ensemble, les buts étaient à peu près les mêmes.

Le génome humain

A chaque fois qu’une cellule se divise en deux cellules filles, la totalité de son génome est répartie, ou répliquée. Pendant la division cellulaire, l’hélice d’ADN se déroule, les liaisons faibles entre les paires de bases se rompent, et les brins d’ADN se séparent. Des nucléotides libres s’apparaissent avec leurs bases complémentaires sur chaque brin d’ADN séparé, et deux nouveaux brins d’ADN sont formés. Chaque nouvelle molécule d’ADN est la copie exacte de l’ancienne.

Chaque molécule d’ADN porte de nombreux gènes, qui sont les unités fonctionnelles de l’hérédité, disposés dans un ordre défini. La plupart des gènes contiennent des informations requises pour construire des protéines, informations appelées code génétique. Il s’agit d’un code binaire sur les séquences des nucléotides qui est « lu » par groupe de trois. L’information génétique est transmise d’une séquence d’ADN vers la protéine grâce à l’acide ribonucléique messager (ARNm) qui est une molécule très semblable à l’ADN.

Dans ce processus, le code génétique dirige l’assemblage des acides aminés (les blocs de construction des protéines) dans l’ordre spécifié par la séquence des nucléotides de l’ARNm, qui lui-même est spécifié par la séquence de l’ADN.

La taille des gènes humains est très variable : un gène peut mesurer de 2 000 à 2 millions de nucléotides. Pour les bactéries, les séquences codantes d’un gène sont des séquences continues de nucléotides. Pour les organismes plus évolués, cependant, les séquences codantes pour les protéines (les exons) sont dispensées par des séquences non codantes intercalées (les introns). Ces introns sont transcrits en ARNm mais sont coupés (épiséré) et supprimés du message avant sa traduction en protéine. En laboratoire, la molécule d’ARNm peut être isolée et utilisée pour synthétiser un brin d’ADN complémentaire (ADNC) qui peut servir à localiser les gènes correspondants sur une carte chromosomique.

On pense que seuls quelque 5 à 10 pour cent du génome humain contiennent l’ensemble des portions codantes des gènes. Le reste est constitué de séquences de contrôle, régions intergéniques et introns.

L’ADN humain est empaqueté en unités physiquement distinctes appelées chromosomes. Un seul lot de chromosomes, soit un nombre haploïde, est présent dans les ovules et les spermatozoïdes. Toutes les autres cellules du corps, les cellules somatiques, contiennent un double lot, soit un nombre diploïde, chaque lot dérivant d’un parent. Ainsi, chaque cellule somatique possède 22 paires de chromosomes appelés autosomes et deux chromosomes sexuels (un X et un Y dans le cas d’un mâle, et deux chromosomes X pour une femme).

Apparition de maladies génétiques

Une variation génétique engendrant une maladie peut survenir dans toutes les cellules du corps, y compris les cellules reproductrices (gamétoïdes), et peut être transmise d’une génération à l’autre. Une variation présente seulement dans les cellules somatiques du corps d’un individu n’auro de conséquences que pour cette seule personne. De nombreux types de cancers résultent de mutations de ce dernier type.

Schématiquement, les maladies impliquant des facteurs génétiques héréditaires peuvent être divisées en trois catégories :

- Les défauts touchant un seul gène et montrant une transmission héréditaire simple de type Mendélien. La plupart de ces conditions sont rares mais comme elles sont nombreuses, elles totalisent un lourd fardeau de maladies. Actuellement, on connaît quelque 4 200 défauts liés à un gène unique qui se manifestent dans 2,5 pour cent de toutes les naissances dans les populations d’Europe occidentale.

- Les défauts touchant de multiples gènes (multifactoriels ou polygéniques) où de nombreux facteurs génétiques et environnementaux sont impliqués. De nombreuses maladies débitant commun dans telles que l’arthrite ou les maladies cardiaques entrent dans cette catégorie.

- Les anomalies du nombre et de la structure des chromosomes, comme pour le syndrôme de Down.

Les buts du PGH

Le but global du PGH est d’utiliser les techniques de génétique moléculaire pour analyser la structure du génome humain, c’est-à-dire de rassembler systématiquement les informations sur les gènes, qui sont les unités de base définissant les formes et fonctions de l’organisme humain. Les efforts pour cartographier et séquencer les gènes se poursuivent depuis de nombreuses années : les projets sur le génome tentent d’accélérer le processus et de le rendre plus efficace en faisant systématiquement ce qui autrement serait fait de façon moins coordonnée et nécessiterait plus de temps et d’argent.
Le PGH, tel qu’il a été décrit à la fin des années 80 et élaboré par les propositions variées de programmes nationaux, a plusieurs buts corrélés qui sont décrits brièvement ci-dessous.

Construction d’une carte génétique de haute résolution du génome humain

Les cartes de liaison génétique représentent la disposition des gènes et des marqueurs de l’ADN le long des chromosomes selon les caractéristiques de leur héritéité. Les marqueurs ayant tendance à être héréditaires ensemble (liés) se trouvent rapprochés sur de telles cartes, et ceux héréditaires indépendamment sont éloignés. Des gènes situés sur des chromosomes différents sont liés indépendamment, c’est-à-dire de façon non liée. Sur un même chromosome, des marqueurs peuvent être séparés pendant la production de spermatozoïdes ou d’ovules, surtout lorsque le chromosome est soumis à des casseurs et des échanges de morceaux avec l’autre chromosome de la paire, phénomène appelé « crossing-over » ou recombinaison. Plus les marqueurs sont proches l’un de l’autre – plus ils sont étroitement liés – moins il y aura de chances qu’un événement de recombinaison survienne dans la région qui les sépare. La fréquence de recombinaison – mesurée en centimorgan (CM) – donne une estimation de la distance entre les deux marqueurs.

L’utilité des cartes génétiques est qu’elle permet de localiser une maladie héréditaire en suivant la transmission familiale d’un marqueur de l’ADN présent chez les individus affectés, même si les bases moléculaires de la maladie ne sont pas connues.

Bien que le rapport du NRC recommande que les marqueurs soient à une distance de 1 CM en moyenne, il est généralement admis que l’objectif à atteindre en cinq ans devrait être une carte entièrement connectée, avec des marqueurs à une distance de 2 à 5 CM en moyenne.

Production d’une variété de cartes physiques de tous les chromosomes humains (et de l’ADN des organismes modèles)

Les cartes physiques permettent de mesurer la distance réelle entre des marqueurs sur le chromosome : différents types de cartes physiques varient dans leur degré de résolution. Les cartes physiques les plus utiles sont celles fondées sur des segments clonés chevauchants : celles-ci reposent sur des techniques fragmentant le génome (ou les chromosomes) en petits morceaux et copiant (clonant) ces fragments. Grâce à des méthodes ingénieuses diverses, les morceaux d’ADN clonés peuvent être alignés à nouveau dans l’ordre où ils apparaissaient sur le chromosome à l’origine. En déplaçant des morceaux se trouvant côté à côté, on peut construire une carte montrant leur localisation sur le chromosome.

Les cartes physiques de nombreux petits génomes (la bactérie E. coli, la levure S. cerevisiae) ont été assemblées au milieu des années 80 grâce à l’utilisation de vecteurs de clonage traditionnels tels que les plages et les cosmides. Toutefois, ces vecteurs ont une capacité limitée : la carte d’un grand génome par les cosmides nécessiterait un énorme nombre de clones. Comme pour les puzzles, les cartes du génome comportent une petite quantité de longs fragments sont plus faciles à assembler que celles avec beaucoup de petits fragments. Le développement du vecteur chromosome artificiel de levure (YAC), capable de contenir et repliquer des morceaux d’ADN beaucoup plus grands (jusqu’à 20 fois plus que les vecteurs précédents), a permis d’envisager le développement de cartes pour les génomes plus grands.

Il faut employer plusieurs stratégies de cartographie physique pour construire de longs morceaux d’ADN chevauchants, appelés les « contigs ». Pour intégrer ces différents types de cartes physiques, il est pratique de se référer à des points de repère dans le génome. De tels points peuvent être représentés par des sites marqués de séquence (SMS) par exemple : ce sont de courts séquences d’ADN, faciles à localiser et pouvant être amplifiées par des techniques de réaction de la polymérase en chaîne (PCR), qu’on utilise pour identifier une localisation génomique. L’un des buts de programme américain est d’assembler les cartes des SMS de tous les chromosomes humains, avec des marqueurs SMS à environ 100 000 pb d’intervalle.

Les cartes de clones chevauchants du génome sont intéressantes parce que ces clones stables restent accessibles à d’autres chercheurs qui peuvent les utiliser directement pour « pêcher » des gènes intéressants.

Détermination de la séquence complète de l’ADN humain et de l’ADN d’organismes modèles choisis

La séquence est la carte physique du génome en sa totalité. On a généralement souhaité que ceci n’était pas un but approprié pour la phase primaire du projet. A l’époque, les seuls organismes pour lesquels le génome entier avait été séquencé étaient les virus, dont le plus grand mesurait 170 000 pb. La taille et la complexité de l’ADN humain renient la tâche impressionnante à envisager : une réduction substantielle des coûts et un accroissement de la vitesse des technologies de séquençage étaient essentiels. En ce temps-là, le coût du séquençage dans les laboratoires qui le pratiquaient en routine était estimé à 5 dollars par paire de bases de séquence accomplie. Il fut décidé que ces coûts devraient être réduits à 50 cents par paire de base avant de lancer un séquençage à grande échelle et que l’automatisation était une approche à envisager. Une autre était le développement de technologies entièrement nouvelles.

Certains contestaient le séquençage de l’ADN génomique humain, en arguant que seuls 5 à 10 pour cent de l’ADN contiennent les régions codantes. (Le restant est parfois qualifié d’ADN « dépôt ». Une stratégie alternative proposait de ne séquencer que les ADNC (comme les programmes britanniques et européens ont décidé de le faire de façon limitée) ; voire l’ADNC dérive de l’ARNm, il ne contient que les séquences codantes épissées rassemblées en une seule unité. Une autre approche était de séquencer les organismes modèles, leur génome étant plus petit et leur ADN plus simple. La plupart des programmes ont inclus en partie cette dernière stratégie. Les programmes américains ont toujours considéré la séquence totale de l’ADN humain comme but ultime.

15
Développement des capacités de stockage, archivage, analyse et distribution des données produites

Les cartes et les séquences d’ADN assemblées par le PGH sont évidemment destinées à être des sources d’informations précieuses pour de nombreuses années à venir. La quantité d’informations potentielles est considérable ; on dit parfois que le PGH est en fait un projet informatique. Les bases de données devraient être conçues pour représenter précisément les différents types d’informations contenues dans les cartes (limites, localisations physiques, tissus des maladies) et les lier aux informations de séquence. Il n’était pas clair s’il fallait de nouveaux types de structures de bases de données ou non. De nouveaux outils étaient nécessaires à l’analyse et l’interprétation des cartes génomiques et des séquences d’ADN aussi à l’automatisation du recueil et de l’archivage des informations.

En plus de ces quatre buts intrinsèques du PGH, il y en avait trois autres :
– développement de technologies novatrices et amélioration des techniques actuelles pour répondre aux besoins du projet sur le génome dans son ensemble (la priorité donnée au développement des technologies dans tous les programmes constituant le PGH avait principalement pour objectif d’abaisser les coûts) ;
– diffusion des technologies par l’intermédiaire de programmes de formation ;
– lancement de discussions de grande envergure sur les implications éthiques, sociales et légales du PGH.

Le PGH a généré certaines inquiétudes parmi le public. Bien que la plupart résultent de malentendus, il n’en est pas moins important d’évaluer et en même temps de déterminer les conséquences réelles que le PGH pourrait avoir. Les questions éthiques et sociales soulevées par ce projet sont communes à celles généralement posées lorsque de nouvelles connaissances viennent à être assimilées. En soi, le projet a engendré peu d’inquiétudes sauf en ce qui concerne la disponibilité et l’appartenance des données et des matériels. La plupart des craintes sont liées aux usages et applications des connaissances obtenues.

Les programmes américains et européens ont tous deux mis de côté des fonds pour promouvoir l’examen des questions/aspects juridiques, éthiques et sociaux appelés « AJES ».

2. Étendue et échelle de l’effort global sur le génome humain

États Membres de l’OCDE

États-Unis

Les États-Unis ont été le premier pays à s’engager financièrement dans le PGH : il possède donc le plus vieux programme ainsi que le plus grand. En fait, le NIH, représenté par le Centre national pour la recherche sur le génome humain (NCHGR), et le DOE ont des programmes séparés. Le budget concernant l’effort américain, et ses deux parties constitutantes, est montré dans la figure 1.

Figure 1. Budget américain pour la recherche sur le génome

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NIH-DOE prévision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH-DOE réel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIH réel extramural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE réel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Le Département de l’Énergie (DOE)

Le programme du DOE est plus varié que ce que l’on croit souvent, aussi bien en ce qui concerne les types d’institutions conduisant des recherches sur le génome financées par le DOE (tableau 1) que la diversité des thèmes (tableau 2). Ces deux tableaux indiquent les chiffres pour 1993 ; les chiffres prévisionnels pour 1994 font état de dépenses de l’ordre de 62 millions de dollars et la distribution, à la fois en ce qui concerne les types d’institutions et les champs d’études, sont très similaires.

Un peu plus de 50 pour cent des fonds du DOE vont à ses propres laboratoires, notamment aux trois centres du génome dans les laboratoires nationaux ; le reste va à quelque 50 laboratoires universitaires ainsi qu’à des entreprises. Il est intéressant de noter que les 13 « petites allocations d’urgence » données en 1993 à des chercheurs russes.

Parmi les trois centres du génome du DOE, le laboratoire national Lawrence Berkeley (LBNL) a été le plus long à trouver sa voie. Néanmoins, il s’est trouvé une
nouvelle activité majeure : la démonstration pilote des technologies de séquençage (d’abord sur la drosophile) et leurs applications au séquençage génomique humain.

Tableau 1. Types d’institutions conduisant des recherches sur le génome financées par le DOE

<table>
<thead>
<tr>
<th>Type d’institutions</th>
<th>Numéro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratoires nationaux du DOE</td>
<td>8</td>
</tr>
<tr>
<td>Autres organisations fédérales</td>
<td>4</td>
</tr>
<tr>
<td>Sites académiques</td>
<td>87</td>
</tr>
<tr>
<td>Institutions du secteur privé</td>
<td>15</td>
</tr>
<tr>
<td>Entreprises, dont RIPE1</td>
<td>15</td>
</tr>
<tr>
<td>Institutions étrangères2</td>
<td>11</td>
</tr>
</tbody>
</table>

1. Recherche et innovation par les petites entreprises (Small Business Innovation Research).
2. 8 nouveaux, 2 transitions, 1 extinxe.

Tableau 2. Distribution des fonds du Projet américain sur le génome humain au cours de l’année fiscale 1993 (engagements financiers en décembre 1993, en milliers de dollars)

<table>
<thead>
<tr>
<th>Type d’organisation</th>
<th>Type de projet</th>
<th>Cartogénie</th>
<th>Sérigraphie</th>
<th>Développement d’infrastructure</th>
<th>Sénescence</th>
<th>AJFS1</th>
<th>Total</th>
<th>Pourcentage du total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratoires du DOE</td>
<td>Cartogénie</td>
<td>19 634</td>
<td>4 426</td>
<td>8 441</td>
<td>6 593</td>
<td>396</td>
<td>39 860</td>
<td>67.8</td>
</tr>
<tr>
<td>Sites académiques</td>
<td>Sérigraphie</td>
<td>3 836</td>
<td>2 140</td>
<td>4 672</td>
<td>5 278</td>
<td>746</td>
<td>16 072</td>
<td>26.7</td>
</tr>
<tr>
<td>Institutions</td>
<td>Développement</td>
<td>2 900</td>
<td>0</td>
<td>50</td>
<td>653</td>
<td>622</td>
<td>3 715</td>
<td>5.9</td>
</tr>
<tr>
<td>dont RIPE1</td>
<td>d’infrastructure</td>
<td>190</td>
<td>0</td>
<td>85</td>
<td>35</td>
<td>310</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Laboratoires du NIH</td>
<td>AJFS1</td>
<td>75</td>
<td>575</td>
<td>1 075</td>
<td>70</td>
<td>102</td>
<td>1 897</td>
<td>3.0</td>
</tr>
<tr>
<td>Entreprises, dont RIPE1</td>
<td>Total</td>
<td>26 125</td>
<td>7 141</td>
<td>14 638</td>
<td>12 079</td>
<td>1 871</td>
<td>62 454</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>Pourcentage du total</td>
<td>41.3</td>
<td>11.4</td>
<td>23.4</td>
<td>20.3</td>
<td>3.0</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

1. Appuis juridiques, études et sociaux.
2. Dans RFS 757 en distribution RIPE.
3. Allocation totale de 64 millions de dollars, moins les fonds destinés aux biens d’équipement (2.3 millions de dollars).

Les deux autres centres du génome, eux, aux laboratoires nationaux Lawrence Livermore (LLNL) et Los Alamos (LANL), ont joué un rôle dans la création de bibliothèques spécifiques de chromosomes et sont généralement considérés comme des réussites. Ils ont réussi à évoluter depuis les bibliothèques de petits inserts vers les cosmides, et de là vers les bibliothèques de P1 et YAC. Malgré l’arrivée des még-YAC du CEPI, ces bibliothèques restent d’un intérêt considérable dans le milieu du génome. Il y a eu des problèmes de disponibilité. L’idée originale était de constituer des bibliothèques utilisables par les divers centres du NIH du génome basés dans les différentes universités ; ces centres du génome les répliqueront et les rendront alors encore plus accessibles (une sorte de système « en chaîne »). Bien que la distribution vers les centres génomiques du NIH ait été accomplie avec succès dans l’ensemble, la distribution à l’extérieur a été moins réussie, en partie à cause de ressources insuffisantes. De nombreuses « petites gens » dans le domaine du génome américain ont le sentiment que les ressources sont en train de se concentrer autour des plus grands centres. Le DOE essaie à présent d’aborder ce problème.

Les centres à LANL et LLNL ont aussi entrepris la construction de cartes physiques entières des chromosomes 16 et 19, en assemblant les contigs des YAC et des cosmides. La carte du chromosome 16 résulte d’un effort de collaboration avec un groupe australien. Il semble qu’une collaboration informelle avec le consortium européen cartographiant le bras court du chromosome 16 pourrait mûrir suite à l’atelier récent sur le chromosome 16. Le chromosome 19 (LLNL) est aussi en bonne voie : Livermore est également en discussion avec le Genethon sur la possibilité de collaborer sur une carte cosmétique couvrant tout le génome.

Le portefeuille des subventions du DOE destinées aux sites académiques ne diffère pas de façon marquée de celui des NIH et de nombreux chercheurs sont impliqués dans les deux. Dans le programme du DOE, il y a peut-être un accent plus prononcé sur le séquençage et l’informatique. Le DOE est à présent l’agence principale pour le soutien de Genome DataBank (Base de Données sur le Génome – BGC) et fournit la plus grande part du financement. Très peu de travaux sur les organismes modèles reçoivent une aide financière, mais il existe un projet souris à Oak Ridge en collaboration avec Livermore. L’importance des transferts de technologies est reflétée par le nombre d’activités mixtes avec les entreprises.

Le DOE a entrepris un nouveau projet sur le « génome microbien ». Un certain nombre de centres entreprendront un séquençage à haut débit d’un micro-organisme, probablement un qui présenterait un intérêt industriel. Initialement, les fonds sont de l’ordre de 3 millions de dollars par an.

Le programme AJFS du DOE, avec un financement de 1.96 million de dollars pour 1994, se concentre sur deux thèmes :

- caractère privé et confidentialité des informations génétiques ;
- éducation, au sens du plus large, à propos du PGH et ses implications. Cela a donné lieu, Inter alia, à un excellent module d’enseignement pour les écoles.
Le NIH : Le Centre national pour la recherche sur le génome humain (NCHGR)

Le programme du NIH est caractérisé par sa grande diversité – il couvre toutes les facettes du PGH. Le programme contient aussi bien des allocations pour des chercheurs individuels que des subventions importantes destinées aux centres du génome ; il encourage aussi bien les efforts spécifiques sur un chromosome que les approches prenant en compte le génome total ; les centres du génome regroupent aussi bien des équipes engagées dans la cartographie physique (qui évoquent les projets latéraux tentants) que ceux portant un intérêt large à l’identification de gènes de maladies et au développement des technologies. La distribution des fonds pour 1994 est donnée dans le tableau 3.

Même si quelques-unes des avancées récentes les plus spectaculaires se sont produites en France, le programme du NCHGR est manifestement en bonne voie pour atteindre ses buts sur cinq ans. On a le sentiment d’un progrès constant, particulièrement dans le développement de technologies de séquençage.

Tableau 3. 1994 : Distribution des fonds du NCHGR (milliers de dollars)

<table>
<thead>
<tr>
<th>Types d'allocations</th>
<th>Montant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allotements de recherche</td>
<td>60 178</td>
</tr>
<tr>
<td>Centres de recherche</td>
<td>33 245</td>
</tr>
<tr>
<td>Autres recherches</td>
<td>2 083</td>
</tr>
<tr>
<td>Formation</td>
<td>3 804</td>
</tr>
<tr>
<td>Contrats de R-D</td>
<td>2 130</td>
</tr>
<tr>
<td>Gestion</td>
<td>6 147</td>
</tr>
<tr>
<td>Total</td>
<td>107 617</td>
</tr>
</tbody>
</table>

Source : Auteur.

Les centres du génome sont une caractéristique invariable du programme, bien que – contrairement à ce que l’on croit généralement – la proportion des fonds accordés aux grands centres ne s’accroisse pas. Quelques centres ont employé une partie de leurs fonds pour la mise en place de « services centraux » pour le criblage des YAC, le séquençage, etc., qui, au moins en principe, devraient être accessibles aux scientifiques extérieurs aux centres. En pratique, cela n’a pas bien fonctionné – on a pu entendre « qu’il était mal de penser que des gens enveloppent leurs sondes à leurs concurrents ».

Il semble y avoir un désintérêt vis-à-vis du chromosome en tant qu’unité de base dans l’analyse du génome, mais ce n’est peut-être que le reflet de l’accomplissement réussi de certaines cartes chromosomiques, comme celles du chromosome Y, et de la progression rapide des autres. Les centres du génome plus récents ont tendance à s’orienter vers l’approche « chromosomes totaux ».

La recherche sur les organismes modèles – la souris, la drosophile, C. elegans, E. coli et la levure entre autres – représente 25-30 pour cent des fonds. Un centre du génome a développé une carte génétique de haute résolution du génome entier de la souris basée sur les marqueurs de l’ADN.

Le programme « AJES » correspond maintenant à environ 5 pour cent des fonds au total. Il a débuté par une série de conférences et d’ateliers conçus pour identifier les priorités de recherche et pour attirer l’attention de ceux qualifiés pour les entreprendre. Il finance à présent des projets de recherche et des bourses. Parmi les questions majeures identifiées, il y a : l’introduction clinique de nouveaux services génétiques ; l’accès et l’utilisation des informations génétiques ; l’éducation du public et l’enseignement professionnel.

Un nouveau programme interne a été lancé par le NCHGR avec des fonds d’environ 20 millions de dollars (argent frais) en 1994. Ce programme ne contribue pas aux buts du PGH ; il se donne une tâche très appliquée – la recherche des gènes de maladies et la thérapie génique.

Au début de l’année 1993, les agences américaines ont entrepris une révision de leurs buts sur cinq ans : il en est résulté un plan quinquennal revu et corrigé1. La progression vers les buts définis à l’origine semblait se dérouler selon les prévisions, voire en avance sur les dates prévues (voir section 3). Les objectifs originels ont été approfondis et affinés. Une adjonction a été faite : un projet pour identifier des gènes contenus dans les cartes et les séquences. Comme l’indiquent les récents « avis de programme », cela a déplacé l’importance vers le développement de technologies de séquençage et les technologies d’identification des gènes.

Canada

A ce jour 27 projets ont été financés sur une grande variété de thèmes, dont les chromosomes humains 2, 7, 8 et 14, le séquençage à grande échelle des gènes du système immunitaire humain et une étude de la variabilité des séquences du génome humain. Les organismes modèles sont aussi représentés : séquençage des chromosomes I et XVI de levure (Saccharomyces cerevisiae) ; séquençage du génome de l’archibactérisque Sulfobolus solfataricus ; études fonctionnelles du nématoide Caenorhabditis elegans ; cartographie du chromosome 4 de la mousse fruitière Drosophila melanogaster ; cartographie des marqueurs exprimés de séquence (MEKS) chez la plante Arabidopsis thaliana ; cartographie du génome du poison zèbre (Brachydanio rerio) ; et séquençage des gènes mitochondriaux.

Le Comité de gestion du programme a préféré financer, à des niveaux appropriés, un petit nombre de projets en collaboration ou pluridisciplinaires à grande échelle, plutôt qu’un grand nombre de projets plus petits, étant donné que les premiers sont plus
susceptibles d’apporter une contribution importante à l’effort international sur le génome. L’influence du Royaume-Uni est visible dans le financement des deux centres de ressources, dont l’un fournit un service de cartographie d’hybridation in situ par fluorescence et l’autre des bibliothèques d’ADN sous la forme de YAC pour les scientifiques canadiens étudiant le génome. Le Programme CAGT étudie aussi des initiatives dans le domaine des banques d’ADN et de la bioinformatique qui élargiraient la recherche sur le génome.

Des subventions de recherche en informatique sont accordées pour des modèles et des algorithmes liés à l’évolution génomiques, l’information structurale dans l’analyse du génome et les calculs pour l’alignement et le séquençage. Des subventions pour le développement de technologies sont allouées pour mettre au point une méthode rapide d’identification et de cartographie des sites d’initiation de la transcription, pour le développement et l’utilisation de meilleurs vecteurs YAC et souches hôtes, et pour un microscope de résolution assez haute pour être utile à l’analyse du génome.

Un des principaux domaines de recherche financés par le programme CAGT concerne la recherche sur les questions médicales, éthiques, juridiques et sociales qui concernent les individus et la société en général et qui sont posées par la recherche sur le génome et ses applications. Le programme s’est doté d’un Comité consultatif à ce propos, qui aident à établir les priorités et le programme de travail pour cet aspect du CAGT. À l’origine, 7,5 pour cent du budget de subventions, soit 1,5 million de dollars canadiens, ont été attribués à cette activité ; depuis, la proportion s’est élevée jusqu’à 10 pour cent (environ 2 millions de dollars canadiens). Pour ce domaine, des subventions sont attribuées à des sujets comme l’effet psycho-social des tests de prédiction génétiques de la maladie de Huntington et du cancer, les effets socio-économiques du dépistage génétique et les aspects juridiques et éthiques de la recherche sur le matériel génétique humain.

Le Programme CAGT fournit également un financement pour les réunions sur le génome tenues au Canada (par exemple, trois ateliers sur le chromosome) et pour couvrir les frais de voyage des chercheurs participant à des réunions sur le génome dans d’autres pays.

Union européenne

Les projets sur le génome de l’UE sont traditionnellement divisés entre les programmes successifs de biotechnologie (BAP, BRIDGE, BIOTECH) pour les organismes non humains, et les programmes de recherche médicale pour le génome humain. Plus récemment, le programme agro-industriel (AIR) a entrepris quelques projets sur le génome. Une liste complète des projets européens sur le génome (1989-96) est donnée dans le tableau 4.

Le génome humain

Le premier programme d’analyse du génome humain a débuté le 29 juin 1990. Le Parlement européen a exigé qu’un engagement financièrement 3 millions d’ECU (environ 25 pour cent du total) avant le 15 décembre 1990 – mission clairement impossible s’il fallait suivre les procédures pesantes de la Commission pour un appel d’offres. Heureu-

Tableau 4. Projets européens de recherche sur le génome 1989-96

<table>
<thead>
<tr>
<th>Domaine</th>
<th>Programme</th>
<th>Nombre de laboratoires</th>
<th>Méthode d’entretien</th>
<th>Consommation financière de l’UE (milliers d’ECU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Séquençage du chromosome III de levure</td>
<td>BAP</td>
<td>35</td>
<td>89-90</td>
<td>2 035</td>
</tr>
<tr>
<td>Séquençage du génome de levure (Chr. II et XI)</td>
<td>BRIDGE</td>
<td>31</td>
<td>91-95</td>
<td>5 060</td>
</tr>
<tr>
<td>Identification moléculaire de nouveaux gènes de plumes (cible sur le génome d’Arabidopsis)</td>
<td>BRIDGE</td>
<td>27</td>
<td>91-93</td>
<td>4 654</td>
</tr>
<tr>
<td>Élaboration d’une carte physique complète et approche stratégique pour le séquençage du génome de Bacillus subtilis</td>
<td>SCIENCE</td>
<td>5</td>
<td>85-91</td>
<td>609</td>
</tr>
<tr>
<td>Carte physique complète du génome de Drosophila melanogaster</td>
<td>SCIENCE</td>
<td>3</td>
<td>88-93</td>
<td>718</td>
</tr>
<tr>
<td>Analyse fonctionnelle et structurale du génome de souris</td>
<td>SCIENCE</td>
<td>3</td>
<td>89-92</td>
<td>1 278</td>
</tr>
<tr>
<td>Développement d’une carte génétique et physique du génome porcin (PigMap)</td>
<td>BRIDGE</td>
<td>11</td>
<td>91-93</td>
<td>1 200</td>
</tr>
<tr>
<td>Organisation du génome esoxylé : défis répétés de l’ADN et évolution dans le génome de Carassius auratus</td>
<td>SCIENCE</td>
<td>2</td>
<td>91-93</td>
<td>250</td>
</tr>
<tr>
<td>Programme d’analyse du génome humain</td>
<td>AGH</td>
<td>>90</td>
<td>90-92</td>
<td>11 700</td>
</tr>
<tr>
<td>Analyse du génome humain</td>
<td>BIOMED</td>
<td>≥ 170</td>
<td>93-96</td>
<td>24 000</td>
</tr>
<tr>
<td>Séquençage du génome de levure (Chr. VI, X, XIV et XV + 1/3 de IV et XII)</td>
<td>BIOTECH (I+II)</td>
<td>80</td>
<td>93-95</td>
<td>12 100</td>
</tr>
<tr>
<td>Séquençage du génome de Bacillus subtilis</td>
<td>BIOTECH (I+II)</td>
<td>16</td>
<td>93-95</td>
<td>2 870</td>
</tr>
<tr>
<td>Les scientifiques européens séquencent Arabidopsis (SESAR)</td>
<td>BIOTECH (I+II)</td>
<td>22</td>
<td>93-95</td>
<td>5 750</td>
</tr>
<tr>
<td>Développement d’une carte génétique et physique des marquages dans le génome bovin (BovMap)</td>
<td>BIOTECH</td>
<td>≥ 20</td>
<td>93-96</td>
<td>1 200</td>
</tr>
<tr>
<td>Infrastructure informatique de cartographie du génome (Genmit) (cartographies porcine et bovine)</td>
<td>BIOTECH</td>
<td>2</td>
<td>93-96</td>
<td>300</td>
</tr>
<tr>
<td>Cartographie de la genome</td>
<td>AIR 1</td>
<td>10</td>
<td>93-96</td>
<td>1 900</td>
</tr>
<tr>
<td>Gènes intéressants de France</td>
<td>AIR 2</td>
<td>≥ 10</td>
<td>En négociation</td>
<td></td>
</tr>
</tbody>
</table>

Source : Annonce.
Un appel d’offres en automne 1990 résultait en un portefeuille de contrats transnationaux où dix des douze États membres de la Communauté européenne étaient représentés. Le programme insistait particulièrement sur l’infrastructure, c’est-à-dire les ressources qui permettraient aux scientifiques européens de renforcer et améliorer leurs études sur le génome. Plusieurs centres de ressources furent créés pour distribuer les matériels biologiques et se charger des données. Vu que l’intention était de s’appuyer sur la compétence européenne existante, le Royaume-Uni et la France furent très bien représentés. Le Laboratoire européen de biologie moléculaire (EMBL) participa également. Un autre objectif était d’étendre les techniques de génétique moléculaire dans la Communauté grâce à des programmes de formation. EUROGEM, le consortium de cartographie de liaison de deux centres de ressources et de 23 laboratoires de cartographie, était un aspect particulier au programme. L’une des initiatives les plus réussies fut la Banque de données génomique intégrée (IGD) qui débuta avec de très petits sommes provenant du Centre de ressources sur les données et d’ailleurs.

L’analyse du génome humain a continué en tant que partie (Aire 3) du Programme de recherches biomedicales et sur la santé, BIOMED 1, avec environ le double de financement. Le nouveau programme fut construit sur les bases du premier avec succès : cette fois-ci, onze des douze pays étaient représentés. (Le douzième, le Luxembourg, ne possède aucune institution de recherche en sciences naturelles.) La réponse à l’appel fut décevante dans deux domaines – le séquençage et l’infomatique. (Pour ce dernier, il existe de nombreux programmes en informatique, pourvus de fonds généraux par l’UE, qui ont des attributs plus évidents.) D’un autre côté, les bonnes applications en cartographie physique étaient abondantes. Il n’y a plus de composante « AJES », étant donné que l’Aire 4 de BIOMED 1 est consacrée à l’éthique biomédicale. La ventilation des fonds est donnée au tableau 5.

La recherche sur le génome humain va se poursuivre avec BIOMED 2 (1995-99), accompagnée d’une nouvelle augmentation de budget. Les sujets étudiés seront :

- la localisation de gènes et l’analyse du génome, y compris la construction de cartes de transcription intégrées, le séquençage de régions chromosomiques spécifiques et l’exploitation des approches comparatives ;
- l’analyse de la fonction des gènes, y compris l’amélioration des techniques pour le ciblage de gènes et le développement de modèles animaux, par exemple la souris ;
- l’analyse de la régulation des gènes, y compris l’identification des séquences de régulation ; l’analyse des mécanismes de régulation de l’expression de gènes spécifiques, notamment ceux impliqués dans les maladies ;
- le diagnostic des maladies génétiques, y compris les facteurs non génétiques et le développement de protocoles pour l’estimation des risques et pour le conseil génétique, avec un accent sur la prévention potentielle ;
- la thérapie génique somatique, y compris le développement de vecteurs de transport de matériau génétique dans les cellules in vitro, le développement de méthodes pour distribuer efficacement et sans danger in vivo les gènes corrélés et la coordination des essais cliniques sur la thérapie génique ;
- les bases de données, y compris l’accumulation, le stockage, l’analyse et le développement des données expérimentales d’une base de données intégrée sur le génome ;
- le développement de technologies, y compris l’encouragement des recherches pour développer des méthodes aptes à réaliser l’un des objectifs mentionnés ci-dessus.

Le trait caractéristique de la recherche au sein de l’Union européenne est que, à part les deux centres de ressources qui dans BIOMED 1 représentent encore 25 pour cent des dépenses, tous les projets doivent être transnationaux, c’est-à-dire doivent impliquer des scientifiques provenant de plus d’un pays de l’UE. Plusieurs consortia ont ainsi émergé, dont de nouvelles collaborations. On note avec intérêt que – uniquement dans le cas des programmes de recherche de l’UE – la recherche sur le génome humain a toujours été ouverte à des participants venant de n’importe quel pays du monde.

Autres génomes

S’il y a un éventail de gènes représentés dans les divers programmes de recherche de l’UE, c’est le projet de séquençage de S. cerevisiae (levure) qui est le plus connu. Tout a commencé en 1989 avec un réseau de 35 laboratoires qui séquençèrent le chromosome III, une initiative décrite à l’époque comme « industrie à domicile ». Toutefois, le réseau a réussi et a montré ce qui pouvait être fait. Le réseau de séquençage n’est constamment accru et a augmenté son rendement de séquence d’au moins 15 fois. Les chromosomes II et XI sont maintenant presque achevés et le séquençage de (morceaux de) six autres chromosomes en est en cours. De plus, la recherche systématique de fonctions a commencé.

Tableau 5. BIOMED 1 (1993-96) Aire 3 : Analyse du génome humain

<table>
<thead>
<tr>
<th>Distribution des fonds</th>
<th>Number of institutes</th>
<th>Funding (millions of ECU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic map</td>
<td>25</td>
<td>3.500</td>
</tr>
<tr>
<td>Genetic code</td>
<td>80</td>
<td>9.083</td>
</tr>
<tr>
<td>Séquençage</td>
<td>8</td>
<td>1.149</td>
</tr>
<tr>
<td>Maintenance of databases and bases of databases</td>
<td>22</td>
<td>4.965</td>
</tr>
<tr>
<td>Development of technologies</td>
<td>48</td>
<td>5.543</td>
</tr>
</tbody>
</table>

Source : Autors.
Le succès de ce projet doit beaucoup à son initiateur, André Gofigu, même si celui-ci tient toujours à signaler que la levure offre naturellement plusieurs avantages : elle possède un petit génome, avec un nombre relativement élevé de chromosomes dont la taille varie considérablement, ce qui permet de choisir un chromosome adapté au budget dont on dispose.

France

La situation en France est complexe, ce qui n'est pas sans rapport avec le fait que les deux contributions les plus notables au PGR proviennent d'organisations étant au moins en partie) dans le secteur privé.

Le Centre d'étude du polymorphisme humain (CEPH) est une fondation privée créée en 1983 par le Professeur Jean Dausset pour « accélérer la cartographie du génome humain ». Le CEPH est effectivement devenu le coordinateur de l'effort conjoint de cartographie génétique international grâce à la fourniture d'ADN provenant d'une liste de référence de 40 grandes familles bien caractérisées. La première élémentaire est qu'une carte de liaison génétique se construit plus facilement si tous les chercheurs étudient du matériel provenant d'un groupe de familles commun. Le CEPH obtient actuellement la moitié de ses financements du gouvernement mais garde une flexibilité considérable dans son mode de fonctionnement.

Le CEPH est aussi impliqué dans le Génétique, dont il est membre avec l'Association française contre les myopathies (AFM). L'AFM, qui recueille 250 millions de francs plus à l'occasion de chacun de ses « téléphones » annuels, a investi une grande partie dans la recherche sur les maladies génétiques. Ces fonds ont été en partie distribués sous forme d'aide financière mais ils ont été utilisés en majorité pour installer et diriger, conjointement avec le CEPH, le laboratoire du Génétique. C'est une grande installation - mêlant services, matériel recherche - avec un budget annuel total de 74 millions de francs.

La plupart des employés sont des techniciens et le Génétique adopte une approche de type « travail à la chaîne » pour ses projets de recherche/technologie.

L'existence du CEPH a fortement stimulé la cartographie génétique en France et il y a de bons groupes au sein des deux principales agences de recherches, l'INSERM et le CNRS. Cependant, ces groupes ont des difficultés à obtenir des financements supplémentaires pour des projets spécifiques, et l'embauche de personnel sur des financements à court terme est presque impossible.

Fin 1990, le ministère de la Recherche a annoncé un Programme français sur le génome humain, avec des financements de 50 millions de francs pour la première année et de 100 millions de francs pour la seconde. Il s'agissait d'argent frais en plus des fonds normalement attribués aux agences scientifiques. Sa réalisation a été retardée par des difficultés diverses : il n'a pu se mettre en route qu'en 1992 lorsqu'un nouveau comité consultatif scientifique a été nommé. Après un appel de propositions en mai 1992, environ 100 millions de francs ont été alloués (en partie au CEPH et au Génétique), principalement pour les dépenses d'équipement et de fonctionnement. Le budget semblait alors se stabiliser à 80 millions de francs, mais en février 1995, le gouvernement français annonça son intention de prendre le contrôle direct des fonds pour la recherche sur le génome humain et de ne laisse à l'agence pour le génome (le Groupement de recherches et d'études sur le génome - GREG) qu'un budget de 20 millions de francs, à consacrer entièrement aux génomes des organismes modèles et des plantes. L'argent retiré au GREG serait utilisé par le ministère de la Recherche pour financer de nouveaux programmes de génétique humaine, sous la surveillance de comités d'experts formés par le ministère. Il semblait que le directeur du GREG soit opposé à ces changements.

Les contributions du CEPH et du Génétique ont été considérables. La bibliothèque du génome par « méga YAC » du CEPH - appelée ainsi parce que la taille moyenne des insert est de 800-900 kb - est utilisée de manière pratiquement universelle. Au Génétique l'effort de cartographie physique (dirigé par Daniel Cohen) a démêlé la structure efficace des YAC spécifiques de chromosome à partir d'une bibliothèque de génome enter. Grâce à une méthode basée sur l'empreinte (fingerprint), une carte comtée de contes YAC du chromosome 21 de même qu'une carte de contes YAC du génome enter ont été publiées. Cela pourrait conduire à réévaluer les efforts de cartographie physique ailleurs. La cartographie génétique et de production de microsatellites (dirigée par Jean Weissman) a fourni une carte comportant 2 067 marqueurs avec des intervalles de 1 cm ou moins sur 50 pour cent de la carte. La troisième branche d'activités au Génétique est le projet ADNC, qui a été le moins réussi mais qui semble avoir surmonté ses difficultés premières et a fourni un nombre important de séquences particules aux bases de données publiques.

La France apporte une contribution substantielle au séquençage des organismes modèles - la levure, la bactérie B. subtilis et la variété de cresson Arabidopsis.

Les Français ont été également très actifs dans les aspects informatiques des projets sur le génome. Cependant, malgré leur force reconnue dans le développement de logiciels et leur capacité apparente à établir des contacts entre la biologie et l'informatique, les contributions françaises ont eu peu d'impact - à l'exception de l'ACDB, une base de données franco-britannique développée pour le projet C. elegans qui a été bien accueillie par d'autres communautés traitant du génome.

Royauume-Uni

Le financement du Projet de cartographie du génome humain du Royauume-Uni (HGMGP) a commencé en 1989 avec une subvention de 11 millions de livres d'argent frais sur trois ans au Conseil de la recherche médicale (MRC). En avril 1992, une somme de 4,5 millions de livres a été ajoutée à la subvention du MRC et affectée spécifiquement à la recherche sur le génome pour cette année budgétaire. Ce financement spécifique a maintenant cessé et les demandes pour la recherche sur le génome sont considérées en compétition avec les autres demandes de fonds.

Les plans pour le HGMP britannique ont été établis après des discussions approfondies entre le MRC et le Fonds impérial pour la recherche sur le cancer (ICRF), qui est un acteur principal dans ce domaine. Il en a résulté deux composantes, un centre de ressources et un programme dirigé ; ce dernier consistait en bourses attribuées par un comité spécial en dehors du procédé habituel d'examen par les pairs.
Le Centre de ressources (situé à l’Hôpital de Northwick Park, Harrow) coûte environ 1.5 million de livres par an. Conçu comme un centre neutre et indépendant, non impliqué dans un projet de recherche, il est devenu depuis une installation nationale fournissant une gamme de services totalisant 2 000 utilisateurs inscrits. Il joue aujourd’hui le rôle d’un centre de distribution et de références pour les ressources biologiques (le crible de YAC et le stock de sondes et d’amortisseurs, notamment populaires) et permet l’accès aux bases de données majeures et aux logiciels appropriés. De plus, il a produit, distribué et partiellement séquencé un nombre de bibliothèques d’ADNc. Suite à un examen du HGMP, le MRC a décidé que le centre de ressources devrait déménager vers le « campus du génome » de Hinxton Hall (où se trouve le Centre Sangor). Il pourrait être doté d’un directeur et d’un programme de recherche, auquel cas il serait intéressant de voir s’il rencontre les mêmes problèmes que les éléments de « services centraux » des centres du génome américains.

Le Royaume-Uni est depuis longtemps un pôle d’expertise aussi bien pour la génétique humaine que pour la biologie moléculaire. La cartographie génétique a été conduite en général dans le contexte de projets concernant des maladies ; dans le HGMP, l’attention a plutôt été portée sur la cartographie physique, mais le nombre de groupes impliqués dans des études systémiques à grande échelle est faible. Deux d’entre eux se détachent : celui de John Sutton au Centre Sangor et celui de Hans Lehrach à l’ICRF.

L’équipe de Sutton, en collaboration avec des collègues de St. Louis, Missouri, a produit la carte physique complète du réna tote d’A. elegans. Les deux groupes, financés conjointement par le MRC et le NIH, sont passés à présent au séquençage à grande échelle.

Le groupe de Lehrach a développé et mis en œuvre plusieurs approches techniques originales pour la cartographie des grands génomes, parmi lesquelles l’utilisation répandue de frites à grilles de haute densité. Il y a eu des réalisations notoires mais les potentielles de ces technologies n’ont pas toutes été concrétisées. Il est possible que le nombre de thématiques et d’organismes étudiés ait été trop grand. Il y a eu également des difficultés de financement : l’ICRF ne possédant pas des ressources illimitées, il y a peut-être eu des problèmes pour attirer les fonds du MRC. En fait, environ la moitié des financements du groupe est venue des programines de l’UE. Avant la fin 1996, le groupe de Lehrach aura cessé toutes ses activités à l’ICRF ; la plupart auront été transférées à Berlin.

L’ICRF a apporté des contributions significatives au HGMP, particulièrement sous forme de ressources – bibliothèques de YAC et de cosmides pour les génomes humain, de souris et de levure ; bibliothèques de cosmides spécifiques de chromosome ; hybrides cellulaires somatiques. La banque de sondes d’ADN au Centre de ressources provient d’un équipement de l’ICRF. Les scientifiques de l’ICRF sont aussi actifs dans le séquençage à grande échelle et dans les aspects informatiques du HGMP.

Par ailleurs, une fondation, le Wellcome Trust, a financé largement les recherches sur le génome. Avec le MRC, le Wellcome Trust finance le Centre Sangor. Sa contribution (44 millions de livres sur cinq ans, y compris les constructions) fournit un soutien au séquençage des génomes humain et de levure, ainsi qu’à quelques activités d’informatique et de cartographie. Le MRC soutient financièrement le séquençage de C. elegans et une partie du séquençage des chromosomes humains. Le soutien financier global au Centre se chiffre à quelque 10 millions de livres par an.

Le Wellcome Trust finance une autre initiative à Oxford (13 millions de livres sur cinq ans) engagée dans l’étude de gènes impliqués dans les maladies complexes, c’est-à-dire multifactorielles.

Le Bureau de la science et de la technologie (OST) du Royaume-Uni a récemment publié un rapport2 qu’il avait ordonné afin d’identifier les domaines de la recherche sur le génome humain ayant une importance aussi bien pour la science fondamentale que pour les perspectives commerciales au Royaume-Uni. Le rapport recommande de donner la priorité à :

- la cartographie physique, particulièrement le financement adéquat de la carte physique basée sur les YAC et la cartographie des gènes sur la carte physique ;
- la cartographie comparative, en particulier la reconnaissance de la force du Royaume-Uni en génétique de la souris et le rôle clé du cross en retour (backcross) européen dans la cartographie de la souris.

Le Royaume-Uni est impliqué dans plusieurs projets concernant d’autres génomes – la levure, la plante Arabidopsis, PigMap – et, très récemment, le poisson Fugu.

Autres programmes européens

En 1991, le MRC du Royaume-Uni a entrepris un examen des contributions à la recherche sur le génome humain.2 Il y est conclu que l’Europe, sans compter la France et le Royaume-Uni, représente environ 10 pour cent des contributions mondiales en génétique humaine et génétique, c’est-à-dire deux fois celle du Japon. Plusieurs pays ont une forte tradition de génétique clinique et de biologie moléculaire, surtout les Pays-Bas. Parmi les États qui possèdent un programme sur le génome avec un financement spécifique, on trouve l’Allemagne, le Danemark, l’Italie, les Pays-Bas et la Suède.

Le programme italien a démarré en 1987, avec un financement d’environ 1 million d’ECU par an, sans compter les salaires. Il est centré sur le bras long du chromosome X, il implique un réseau étendu de laboratoires et il semble avoir des liens efficaces avec les États-Unis (St. Louis). Le programme danois (37.5 millions de couronnes danoises, environ 5 millions d’ECU, sur cinq ans depuis 1991) a un centre à l’Université Aarhus : on espère qu’il sera renouvelé pour cinq autres années. L’effort hollandais consiste essentiellement en un programme prioritaire sur dix ans qui, en tout cas, ne sera pas renouvelé, mais il y a une action pour créer un programme prioritaire secondaire sur la régulation des gènes. L’Allemagne (en joignant le plus riche de ces pays) a été relativement modestement impliquée – environ 4 millions d’ECU par an – mais a commencé un effort bien plus substantiel. Le programme suédois a démarré en 1992 avec des fonds de 25 millions de couronnes suédoises (2.8 millions d’ECU environ) sur trois ans. Il y a aussi une « Initiative nordique sur le génome » qui a pour objet de coordonner les activités dans les pays nordiques.
L'Engagement du Laboratoire européen de biologie moléculaire (EMBL) à Heidelberg s’est limité à l'instrumentation et l'informatique. Le groupe d'instrumentation de Wilhelm Ansorge a produit l'unique compresseur sériaux à ce jour au séquenceur d’ADN ABL. (Cette machine n’a pas capturé un plus grand marché en grande partie à cause d’un retard de deux ans dans la commercialisation, dû au rachat de LKB par Pharmacia.) Le groupe a également développé des systèmes robotiques et un synthétiseur d’ADN à haute rendement. L’EMBL dirige aussi le DNA Data Library qui est l’une des bases de données de séquences d’ADN. Celle-ci s’est transférée au “cours du génome” à Hinxton près de Cambridge (Royaume-Uni) dans le cadre d’une nouvelle antenne de l’EMBL, l’Institut européen de bio-informatique (EBI).

Japon

Le programme japonais a mis du temps à prendre forme. Le Japon n’a pas une grande tradition de génétique clinique, parce que les maladies héréditaires sont souvent considérées honeuses et sont cachées le plus possible. Certaines justifications de recherche employées dans d'autres pays – la découverte des gènes responsables de maladies ou de leurs prédispositions – n'étaient donc pas utilisables. Il y avait également un certain manque d'accords entre les agences de financement, mais finalement, trois projets séparés ont été lancés sur le génome humain plus un sur le génome du riz. Le tableau 6 indique les financements approximatifs en 1993.

<table>
<thead>
<tr>
<th>Agence</th>
<th>Millions de dollars (environ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministère de l’Éducation, de la Science et de la Culture (Monbusho)</td>
<td>7,5</td>
</tr>
<tr>
<td>Agence de la science et de la technologie (STA)</td>
<td>10,0</td>
</tr>
<tr>
<td>Ministère de la Santé (génétique humaine)</td>
<td>7,5</td>
</tr>
<tr>
<td>Ministère de l’Agriculture (riz)</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Source : Authors.

Ministère de l’Éducation, de la Science et de la Culture (Monbusho)

Le projet est dirigé par Kenichi Matsubara et rassemble les travaux de plusieurs excellents groupes de biologie moléculaire en un groupe central et en cinq centres locaux de recherche sur le génome humain. Il y a aussi une subvention de l’État pour l’informatique sur le génome.

Comme au Royaume-Uni, le projet comporte dès le départ une composante ADNc. Pourtant, Matsubara et ses collègues ont opté pour la construction de bibliothèques d’ADNc reflétant le plus précisément possible le contenu de ARNm d'un tissu donné, c'est-à-dire une approche totalement à l'opposé de l'approche de «normalisation». Le plan consiste à séquencer 1 000 clones d’ADNc pour chacun des quelque 200 types cellulaires de base, de façon à obtenir un échantillon de tous les gènes exprimés dans chaque tissu et une mesure du niveau de transcription.

Le Monbusho soutient aussi la banque de données DNA Data Bank of Japan (DDBJ) qui, en collaboration avec les banques de données américaines et européennes, rassemble et entretient des données relatives aux séquences d’ADN, développe des logiciels et agit comme centre de ressources international.

Agence de la science et de la technologie (STA)

La STA est une agence gouvernementale impliquée en particulier dans la recherche sur l'énergie et le développement des technologies. Ses programmes sont orientés plutôt vers la technologie et concentrés sur les chromosomes 3, 11 et 21. Il y a deux centres principaux à Tsukuba, où se trouve aussi «l'usine de séquences» HUGA. Il s'agit d'une série de robots réalisant toutes les étapes des technologies conventionnelles de séquenceur d’ADN.

L'autre centre est le Centre national des sciences radiologiques à Chiba, un laboratoire de cryogénétique plus ou moins conventionnel s'intéressant à l'hybridation in situ. Son travail est fortement associé à celui de Nakamura, qui travaille sur le cancer dans un institut privé; celui-ci est pourvu de fonds considérables de la STA et il est acteur principal dans la cartographie des chromosomes 3 et 11. Plus récemment, la STA a contribué aux financements de groupes de recherche sur le génome au sein des universités.

En général, l’accent semble être mis sur le séquençage plutôt que sur la cartographie systématique. Mis à part Nakamura, il y a peu d’efforts isolés de cartographie, comme en témoigne la faible participation japonaise aux congrès sur le chromosomes. Le séquençage de l’ADNC est en cours dans plusieurs groupes mais il semble probable que le séquençage génomique (surtout chez les souris) sera de plus en plus important. La STA soutient aussi la branche japonaise de la Base de données sur le génome (GDB).

Ministère de l’Agriculture : le génome du riz

Le riz possède un tout petit génome, un dixième de la taille du génome humain et seulement trois fois plus grand que le génome de la plante modèle, l’Arabidopsis. Il a douze chromosomes et la moitié du génome est constitué de séquences en exemplaire. Il est donc plus intéressant que le blé par exemple (cinq fois la taille du génome humain et six copies de chacun des sept chromosomes). Le programme japonais a construit des bibliothèques de YAC pour tout le génome du riz et a séquencé presque un quart des gènes. Récemment, un chercheur britannique travaillant sur le blé avec le Projet japonais sur le génome du riz a découvert que, bien que le riz et le blé aient divergé il y a 60 millions d’années, leur génome était essentiellement collinaire. Six chromosomes de blé sont identiques à ceux du riz et le septième est divisé en deux dans le riz. On explique les quatre chromosomes de riz restants par des duplications ou boulons de chromosomes de blé. Comme dit l’auteur, «le riz, c'est le blé sans les répétitions». Cela a une portée énorme : les agronomes peuvent reconstruire le génome ancestral des céréales :
ensuite, les gènes de toutes les céréales importantes (pas seulement le riz et le blé) pourront être placés sur une même carte et, bien sûr, déplacés d'un gène à l'autre.

Orientations futures

Au milieu de 1994, le Comité sur le génome humain, responsable devant le Conseil de la science et de la technologie du Premier ministre, a publié un rapport intitulé « Tâches urgentes pour le Projet sur le génome humain ». Le Comité y conclut que de bons progrès ont été faits : par exemple, « Le Japon a joué un rôle de leader en initiant l'analyse de l'ADN des organismes humains et modèles. » Toutefois, ils ont trouvé la situation pour la phase suivante du PGH - le séquençage à grande échelle - beaucoup moins rassurante. Ils ont noté que les laboratoires japonais possèdent des clones prêts au séquençage pour plusieurs régions chromosomiques contenant des gènes associés à des maladies et que l'ensemble de ces matériaux concernant des maladies dépassait 20 Mb. « Malheureuse-ment », ont-ils conclu, « les installations de recherche existantes au Japon ne sont pas équipées pour entreprendre un séquençage à grande échelle et il est urgent d'améliorer la situation. Nous espérons jouer un rôle important dans l'effort international de séquençage. » Après avoir diagnostiqué un manque de personnel qualifié pour entreprendre le séquençage, et conclu à la nécessité d'augmenter le soutien financier, le Comité a conseillé vivement une action immédiate en ce sens.

Australie et Nouvelle-Zélande

L'Australie ne possède pas de projet formel sur le génome humain, même si le Conseil national de la santé et de la recherche médicale (NHRMC) a déjà envisagé son démarrage à plus d'une reprise. Le projet d'une installation australienne pour la recherche sur le génome, qui serait impliquée à Melbourne et à Brisbane pour un coût de 13 millions de dollars australiens, sera examiné en 1995 dans le cadre du Programme sur les principales installations de recherche nationales (MRNF).

Il existe plusieurs centres d'expertise en génétique moléculaire humaine dont celui du groupe du Professeur Grant Sutherland à l'Hôpital des Enfants d'Australie est le plus notable. Ce groupe est financé par une allocation du programme du NRHM, mais il est aussi un exemple commercial d'un contrat avec la DOE américain pour la cartographie à grande échelle du chromosome 16, en collaboration avec le Laboratoire national de Los Alamitos. En l'absence d'un programme national sur le génome, la participation à celui des États-Unis a beaucoup de mérites. La réunion annuelle des entreprises contractantes du DOE, par exemple, rassemble des scientifiques impliqués dans un champ de projets sur le génome bien plus large que cela ne serait possible en Australie.

Le gouvernement australien a été le premier à fournir une subvention de 50 000 dollars australiens à HUGO. Cet argent est utilisé en grande partie pour soutenir financièrement les déplacements des scientifiques australiens se rendant aux ateliers sur le chromosome. Il y a deux antennes de la Base de données sur le génome (BDG) en Australie.

L'Australie est également engagée dans le projet international sur l'Arabidopsis et prend la tête, avec les États-Unis, du programme sur le bétail. La Nouvelle-Zélande possède un programme national de cartographie génétique du mouton (SheepMap) ayant pour objet immédiat une carte avec une résolution de 20 cM.

En dehors de l'OCDE

Russe (et ex-Union Soviétique)

En 1989, l'ex-Union Soviétique a lancé un programme sur le génome humain avec un financement d'environ 25 millions de roubles par an, dont cinq millions en devises. A l'époque, cela représentait une somme considérable – peut-être un cinquième du budget d'un assez grand institut de recherche – et le niveau d'équipement dans de nombreux laboratoires est une preuve de la bonne utilisation de cet argent. Le programme avait les mêmes composantes que d'autres, avec un accent sur des chromosomes spécifiques (3, 5, 13, 19). Il couvrait plus de recherches orientées sur les gènes responsables de maladies, plus de développement d'instruments et plus de développement de réactifs, surtout ceux de marque déposée qui devaient sinon être achetés en devises fortes à l'Ouest.

Avec la fin de l'Union soviétique, le programme est devenu essentiellement russe. Il coordonne les efforts de quelque 130 scientifiques de 15 institutions dont certains sont hors de Russie (Riga, Kiev). L'accent est mis sur la cartographie physique (chromosomes 3, 5, 13), la cartographie transcriptionnelle (chromosomes 13, 19), le séquençage et le développement des technologies. L'Institut Engelhardt est l'un des pionniers du séquençage par hybridation. On dit qu'il est difficile aujourd'hui d'obtenir des financements pour la cartographie génétique ou pour les études liées aux maladies, et que le programme est dominé par les biologistes moléculaires.

Il est quasi-impossible de comprendre la situation financière. Deux choses sont claires : l'argent consacré au génome humain est une source importante de fonctionnement de nombreux instituts ; cependant, l'inflation le rend de plus en plus inadapté. Le taux de change actuel rend prohibitifs les prix des réactifs étrangers et des équipements. Le manque de sommes relativement modestes en devises fortes peut aussi être frustrant, par exemple pour disposer des bases de données par télécommunications. Enfin, les salaires n'ont pas évolué de pair avec l'inflation et cela a provoqué « une fuite de cerveaux » considérable.

Dans ce contexte, les « petites allocations d'urgence » du DOE américain ont eu un énorme effet. (Il y a des liens assez proches avec les scientifiques du DOE.) Il est malheureux que l'Union européenne ait mis tant de temps à prendre son programme PECoA aux pays de l'ex-Union soviétique, mais elle injectera bientôt de précieux ECU nécessaires au programme sur le génome.
Autres pays

La Chine a fait connaître son engagement dans le programme sur le génome humain, sans annoncer de budget. Elle a aussi lancé un programme de séquençage du génome du riz. On dit que l’Arabie saoudite envisagerait également un programme sur le génome humain.

Commentaires

Il est difficile de faire une comparaison quantitative entre les niveaux de financement des efforts des différentes nations étant donné que les utilisations possibles des fonds varient énormément. Les programmes américains prévoient tous les coûts marginaux liés à la recherche et un niveau élevé de frais généraux. De nouveaux programmes européens ne prévoient que des dépenses de fonctionnement et d’équipement (sans donc compter les salaires) ; les programmes de l’UE considèrent explicitement qu’il y a un apport additionnel venant des ressources individuelles des États membres (c’est-à-dire que l’UE ne fournit « une contribution »). Mais même en tenant compte du fait qu’en dehors des États-Unis, l’argent alloué à des programmes spécifiques est souvent considérablement sous-estimé, les programmes américains représentaient au moins 50 pour cent des ressources destinées à travers le monde au PGH.

Pendant les premiers stades du PGH, les progrès semblent avoir été presque autant dépendants de la créativité scientifique que de la disponibilité de grandes ressources. Par exemple, l’Europe ne semble pas avoir été dépassée par les succès américains. Mais dans les stades ultérieurs, depuis que le séquençage de masse est à l’ordre du jour, les progrès auront tendance à être directement proportionnels aux ressources.

3. Progression vers les buts du PGH

Comme indiqué plus haut, les agences américaines ont tenu une série de réunions au début de 1993 pour examiner les progrès faits au cours des trois ans depuis le début du projet et pour remettre à jour, à la lumière des nouveaux développements, les buts qu’ils s’étaient fixés au début de l’aventure. Des scientifiques venus de l’étranger ont pris part à ces réunions et l’examen a tenu compte des avancées des programmes non américains. Il en a résulté un consensus scientifique quasi général sur les directions que le PGH devrait prendre.

Achèvement des cartes

Les cartes génétiques humaines de 2 à 5 cM portant sur des marqueurs très instructifs seront achevées plus tôt que prévu. L’utilisation des marqueurs microsatellites, qui sont une série de répétitions en tandem de courtes séquences d’ADN, a été initiée aux États-Unis. Ce sont des marqueurs très utiles parce qu’ils sont localement polymorphes, c’est-à-dire que le nombre de copies de l’unité répétée à chaque site génomique peut différer de façon marquée parmi les individus. Ils peuvent également être détectés par la réaction de la polymérase en chaîne (PCR).

La carte génétique du Génédome contient plus de 2 000 marqueurs microsatellites : 50 pour cent de la carte a une résolution de 1 cM ou moins, bien qu’il y ait 22 trous de plus de 10 cM.

Les progrès sur la carte physique sont bons également. Les efforts nationaux et internationaux sont tous deux concentrés sur les cartes physiques constituées de fragments de clones chevauchants portés par des vecteurs YAC, cosmides ou autres. Comme on l’a dit plus haut, le Génédome et le CEPH ont énormément progressé dans la construction des cartes en se basant sur leur méga-YAC. Leur carte de première génération du génome entier est une réussite considérable. Aux États-Unis, les efforts du NIH basés sur le chromosomes 1 et 16 sont bien avancés ; en effet, la première est en cours d’achèvement. La construction d’un jeu de cartes physiques intégrées du génome humain, le but ultime étant des cartes physiques à la résolution nécessaire au séquençage de l’ADN.

Obtention de la séquence

Le génome humain

Comme on l’a dit ci-dessus, on suppose d’habitude que la valeur de la séquence du génome humain varie de façon marquée d’une région à l’autre et que les régions codantes sont les plus importantes parce qu’elles sont traduites en protéines. Quelques chercheurs soutiennent que les régions riches en gènes devraient être séquencées en priorité (c’est ce qui se passe en ce moment). Toutefois, il est possible que le génome humain sera en fait séquencé intégralement.

La détermination de la séquence nucléotidique est actuellement une procédure complexe comportant de nombreuses étapes relativement laborieuses. Plusieurs niveaux ont été automatisés ; des améliorations supplémentaires devraient garantir que le but consiste à séquencer l’ADN à un prix de 50 cents par paire de bases d’il y a 1990 sera atteint facilement.

Cependant, il y a des problèmes. Le but du PGH n’est pas seulement d’obtenir la séquence du génome humain dans la limite des 15 ans envisagés, mais aussi de le faire avec une technologie qui rendra alors possible le séquençage rapide d’autres génomes à coûts moindres. Pour atteindre cet objectif, il faudra développer des technologies de séquençage très améliorées : on estime qu’il faut une amélioration de vitesse d’un facteur 1 000. On cherche constamment de nouvelles approches au séquençage, mais le plupart des méthodes novatrices essayées jusqu’à présent se sont montrées décevantes. Celles-ci incluent la spectroscopie de masse, la microscopie à balayage à effet tunnel et la dégradation en molécules élémentaires. L’approche évolutionnaire, c’est-à-dire l’amélioration des technologies de séquençage basées sur des gels d’ADN, ne doit pas être négligée. Quelques améliorations pourraient provenir d’une automatisation supplémentaire. Jusqu’à présent, l’accent a été mis sur l’automatisation des étapes individuelles ; l’attention est actuellement en train à se tourner vers l’autorisation globale des étapes de façon à ce qu’une telle étape ne soit limitée.
Les États-Unis ont également attiré l’attention sur le besoin d’argent et d’effectifs supplémentaires. Le nouveau plan quinquennal américain (1994-98) préconisait de donner la priorité à l’augmentation du nombre de groupes impliqués dans le séquençage de masse. Il suggère aussi qu’un « investissement immédiat de 100 millions de dollars par an sera nécessaire aux seules technologies de séquençage » : au niveau actuel de financement, cela ne semble pas possible.

Malgré l’insistance sur la recherche d’une technologie radicalement nouvelle, il semble peu probable qu’il y en ait une avant que le séquençage du génome ne soit bien avancé. A la fin de l’année 1994, les leaders du séquençage de *C. elegans* - John Sulston du Centre Sanger et Robert Waterston de Washington University, St. Louis - ont proposé un plan de séquençage du génome humain initial, en utilisant les technologies existantes, avant la fin 2001. Leur expérience avec le nématode laisse supposer qu’il est possible de diminuer le coût de séquençage à 12 cents par base. Ils proposent d’abaisser légèrement la norme de précision (de 99.99 pour cent à 99.9 pour cent) ; en tenant compte de la possibilité d’un très petit nombre de tirs, la séquence entière pourrait être obtenue par trois grands centres de séquençage à un coût total de 300 ou 400 millions de dollars sur cinq ans. Ce projet a d’abord été présenté lors d’une réunion des directeurs des centres du génome du NCHGR, organisée en décembre 1994 pour discuter la phase suivante du PGH, et a reçu l’approbation générale. Le projet a été discuté deux fois en janvier 1995 : lors d’une réunion d’HUGO à Londres et par le Conseil consultatif du NCHGR. Ce dernier a exprimé quelques réserves, en partie à cause de l’absence d’une carte prête au séquençage – il n’existe pas de clones cosmiques cartographiés disponibles pour de grandes parties du génome humain. Des inquiétudes se sont également exprimées quant aux effets, sur le développement de nouvelles technologies, d’un investissement lourd dans le séquençage traditionnel. Les contraintes les plus sérieuses concernaient la réticulation radicale du PGH qui s’ensuivrait, non seulement à cause du passage de la cartographie au séquençage, mais aussi parce que la contribution américaine à cet effort pourrait être de l’ordre de 30 millions de dollars par an, c’est-à-dire, qu’un tiers du budget du NCHGR soit à un très petit nombre de grands centres.

A la même réunion de janvier, le Conseil consultatif consentit à faire un appel d’offres pour des projets de séquençage du génome humain à grande échelle, avec un budget total de 10 à 15 millions de dollars par an. En même temps, le Centre Sanger est en train de séquencer une partie du chromosome 4 de 2.2 Mb de long, qui comprend la région de la maladie de Huntington. Waterston et Sulston espèrent faire partie d’un consortium pour séquencer le chromosome humain 22.

Autres génomes

Le séquençage chez les organismes modèles a révélé une ressemblance remarquable entre les gènes partagés par plusieurs espèces. On a des raisons de croire qu’il y aura relativement peu de gènes distincts « humains » et que la plupart des gènes trouvés dans les génomes simples seront aussi trouvés chez l’homme. Dans ces génomes simples, les gènes sont empackets de façon plus serrée : la valeur d’une quantité donnée de séquençage, en termes de gènes découverts, est considérablement plus forte que pour le séquençage génomique humain.

La progression du séquençage de levure est indiquée dans le tableau 7. La séquence entière sera disponible d’ici fin 1996.

Le consortium sur *C. elegans* a récemment publié la séquence nucléotidique de 2 181 032 paires de bases contigus dans le groupe des gènes situés au chromosome III. Cette phase pilote du projet a convaincu les chercheurs que le séquençage de métabases à prix raisonnable est possible avec la technologie actuelle, même si ces améliorations et une intensification des efforts, ils présenteront une production annuelle de plus de dix métabases de séquences décodées par chaque moitié du consortium. La séquence de *C. elegans* (100 Mb) devrait être achevée d’ici fin 1998.

D’autres projets de séquençage à grande échelle sont en cours dont celui d’*E. coli* et *Drosophila*. De nouveaux projets démarreront sur Arabidopsis et de nombreux micro-organismes.

Tableau 7. Séquençage du génome de levure

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Taille (Mb)</th>
<th>Coordonné</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>200</td>
<td>Canadien</td>
<td>Septembre 1994</td>
</tr>
<tr>
<td>II</td>
<td>830</td>
<td>Commission européenne</td>
<td>1994</td>
</tr>
<tr>
<td>III</td>
<td>310</td>
<td>Commission européenne</td>
<td>Mars 1992</td>
</tr>
<tr>
<td>IV gauche</td>
<td>600</td>
<td>États-Unis</td>
<td>Mai 1995</td>
</tr>
<tr>
<td>IV droite</td>
<td>600</td>
<td>Royaume-Uni</td>
<td>1995</td>
</tr>
<tr>
<td>V</td>
<td>610</td>
<td>États-Unis</td>
<td>Décembre 1994</td>
</tr>
<tr>
<td>VI</td>
<td>280</td>
<td>Japon</td>
<td>Décembre 1995</td>
</tr>
<tr>
<td>VII</td>
<td>1 200</td>
<td>Commission européenne</td>
<td>1996</td>
</tr>
<tr>
<td>VIII</td>
<td>550</td>
<td>États-Unis</td>
<td>Juillet 1994</td>
</tr>
<tr>
<td>IX</td>
<td>450</td>
<td>Royaume-Uni</td>
<td>1994</td>
</tr>
<tr>
<td>X</td>
<td>760</td>
<td>Commission européenne</td>
<td>Décembre 1995</td>
</tr>
<tr>
<td>XI</td>
<td>650</td>
<td>Commission européenne</td>
<td>Mai 1995</td>
</tr>
<tr>
<td>XII naïve</td>
<td>600</td>
<td>États-Unis</td>
<td>Décembre 1995</td>
</tr>
<tr>
<td>XII gauche</td>
<td>600</td>
<td>Commission européenne</td>
<td>1996</td>
</tr>
<tr>
<td>XIII</td>
<td>920</td>
<td>Royaume-Uni</td>
<td>1995</td>
</tr>
<tr>
<td>XIV</td>
<td>800</td>
<td>Commission européenne</td>
<td>Fin 1995</td>
</tr>
<tr>
<td>XV</td>
<td>1 200</td>
<td>Commission européenne</td>
<td>1996</td>
</tr>
<tr>
<td>XVI droite</td>
<td>500</td>
<td>Royaume-Uni</td>
<td>1996</td>
</tr>
<tr>
<td>XVI gauche</td>
<td>500</td>
<td>Canada</td>
<td>1996</td>
</tr>
</tbody>
</table>

Source : Author.

Organismes modèles et cartographie comparative

Les raisons d’étudier les organismes modèles sont multiples. Avec des organismes tels que le nématode, la drosophile ou la souris, il est possible d’obtenir des cartes de
liaisons génétiques très précises grâce aux périodes courtes entre générations et à l’absence de contraintes étiques sur les programmes de croisement. Ces génomes petits et simples sont aussi utiles pour le développement et l’essai de stratégies expérimentales. Mais outre cela, notre connaissance de la biologie humaine doit beaucoup à l’étude des organismes simples qui portent avec l’homme de nombreuses propriétés cellulaires et moléculaires fondamentales.

La souris

Les organismes modèles les plus intéressants pour l’homme sont les espèces mammifères ; parmi elles, la souris a été la plus attentivement étudiée. Elle a servi de modèle important pour les maladies génétiques humaines, et la recherche génétique chez la souris a permis d’élucider les mécanismes moléculaires à la base de maladies génétiques chez l’homme. Un des avantages de la souris est qu’il est possible de manipuler et d’étudier l’expression d’un gène et sa fonction.

Le génome de la souris n’est pas plus simple que celui de l’homme : en effet, il est homologue à environ 90 pour cent à celui de l’homme et il y a de grandes régions montrant une liaison conservée (synténie). (Si le génome de la souris était décomposé en morceaux et réassemblé dans un ordre différent, on obtiendrait une assez bonne approximative du génome humain.) Grâce à ces ressemblances, la connaissance de la carte de la souris aidera à compléter celle du génome humain. Les renseignements sur la cartographie d’une région du génome de la souris peuvent être utilisés pour présupposer l’ordre des gènes, etc., sur une région homologue du génome humain. La cartographie comparative – c’est-à-dire la localisation du gène humain sur la carte de la souris ou vice versa – la susceptibilité à de nombreuses maladies majeures est contrôlée par plus d’un gène et peut être plus facile de cartographier un nouveau gène chez la souris et de prédire sa localisation chez l’homme que de le cartographier directement chez l’homme.

Ces dernières années, la cartographie de la souris a connu un essor formidable, en partie grâce à la connaissance des marqueurs microsatellites (comme pour les cartes de la souris). Ces « croisements interspécifiques » exploitent la diversité génétique des gènes et des marqueurs d’ADN pour mettre en évidence des variétés entre espèces et pour identifier les gènes qui influencent la croissance, la survie, les caractéristiques morphologiques, etc. La plupart des gènes de la souris sont contribués à ces croisements et permettent de les cartographier lors d’un croisement.

Une carte de liaison génétique à haute résolution chez la souris a été publiée en 1993 par trois groupes américains. Elle intègre deux cartes séparées, une carte fondée sur le gène, avec 1 098 loci, et une carte microsatellite, avec 1 518 loci. Les deux séries de marqueurs servent à des buts assez différents. Les microsatellites peuvent servir à l’analyse génétique de différents croisements de souris, mais la carte fondée sur le gène montre les correspondances avec le génome de l’homme (et d’autres espèces).

Un autre effort va bientôt permettre d’obtenir une carte génétique à résolution encore plus haute. Le Collaboration européenne sur le croisement interspécifique en retour (EUCIB) est un backcross sur 1 000 animaux entre les souches Mus musculus et Mus spretus. Ce croisement est bien plus grand que tous les précédents (qui concernent l’habituale de 100 à 200 animaux) et il fournit une résolution génétique de 0,3 cM avec 95 pour cent de certitude. Quelques 79 marqueurs de repère (3 à 4 par chromosome), sou- vant des gènes, mais pas toujours, ont été cartographiés. De plus, il existe un panel de recombinants pour des régions de chromosomes individuels destiné à la cartographie à résolution fine. L’EUCIB possède une base de données associée.

Une collaboration anglo-américaine tente de cartographier 6 000 marqueurs microsatellites à partir de l’EUCIB, ainsi que des gènes et des ADNC. L’espace bien moins sur la carte de la souris passerait alors sous la limite de 500 kb, et la construction d’une carte physique (par YAC) deviendrait aisée.

Le poisson Fugu rubripes

C’est la dernière espèce à avoir été proposée en tant que substitut à l’homme. Elle possède le plus petit génome de tous les vertébrés (400 Mb). D’après les analyses de séquences, il semble que les gènes de Fugu sont petits parce qu’ils possèdent de très petits introns. De plus, il n’y a pas de signe de séquences hautement répétées caractéristiques de l’ADN de l’homme (et de la souris). Ainsi, il devrait être plus facile d’identifier les gènes. Ainsi, il l’ordre des gènes est conservé par rapport au génome humain, cela devrait faciliter le clonage positional des gènes humains intéressants. Des études pilotes sur les possibilités de Fugu sont en cours.

Animaux d’élevage

Le motif majeur pour la cartographie génétique des animaux d’élevage est de fournir des loci affectant la croissance, la fertilité, la qualité de la viande, etc. En outre, le potentiel de recherches animalières chez les animaux peut éclairer notre connaissance des maladies humaines.

Il y a plusieurs efforts pour cartographier les génomes d’animaux d’élevage – dont le cochon, le mouton, la vache et le poulet. La plupart sont entreprises au sein de collaborations internationales et ont pour objet des cartes d’une résolution d’environ 20 cM.

Informatique

La gestion des informations est le plus compliqué du PGH et non seulement en raison de la croissance exponentielle des données. Le but ultime recherché est la création d’une banque de données intégrée sur le génome humain qui prendrait en compte les trois différents types d’informations d’importantes pour le PGH : les informations de cartographie génétique et physique des chromosomes, les
séquences d’ADN, les séquences et les structures des protéines. Dans les trois cas, il existe plus d’une banque de données :

- les informations de cartographie des différents génomes, de l’homme, de la souris, de C. elegans, de drosophile, etc. ;
- les bases de données ouvertes à la communauté scientifique en général, avec les bases de données individuelles des laboratoires.

Les bases de données répondant aux besoins des cartographes et des séquenciers du génome sont de plus en plus nombreuses. Quelques-unes sont décrites ci-dessous.

Il y a trois bases de données sur les séquences d’ADN qui existent depuis assez longtemps ; elles se trouvent aux États-Unis, au Japon et à l’antenne de l’EMBL, au Royaume-Uni. Elles collaborent de façon informelle, sous la tutelle d’un Comité consultatif international, dont les membres proviennent des comités consultatifs des trois bases de données. Après avoir connu une série de problèmes dans les années 80, elles réussissent à s’entendre autour de la gestion de données qui leur arrivent ; la structure de coordination entre elles semble fonctionner correctement. De temps en temps, il y a eu des tentatives pour élargir le groupe, mais elles ont été découragées en raison des problèmes de gestion qui pourraient surgir. Cependant, dans les deux dernières années, le DOE a fondé une deuxième base de données de séquences d’ADN (GSDB, la Base de données de séquences du génome à Santa Fe) où seront déposées des données de séquences-objets de gestion internationale et qui la duplication facilitera la collecte efficace et économique des données sur les séquences d’ADN.

La Base de données sur le Génome (GDB, Université Johns Hopkins, Baltimore) est une base de données regroupant des cartes du génome et des objets cartographés ; elle a été créée par Howard Hughes mais son financement a été repris en 1991 conjointement par le NIH et à la lecture des données, dans des centres au Royaume-Uni, en France, en Allemagne, aux Pays-Bas, en Suède, en Australie, au Japon et en Israël et ces copies relationnelles (Sybase) disponible dans le commerce pour stocker et rendre accessibles les données de manière externe. Beaucoup d’experts en bioinformatique préfèrent le système relationnel large avec beaucoup d’utilisateurs simultanés, cependant, il s’est révélé très complexe. Les données sont présentées à l’utilisateur sous forme d’une série de tableaux et de limitations, notamment sur sa capacité à soutenir de gros affichages de cartes. Son aptitude à gérer de façon adéquate les cartes physiques est également mise en question.

Il y a aujourd’hui de multiples façons d’accéder à la GDB, par exemple via World Wide Web qui est conçu pour faciliter l’accès aux ressources Internet : les documents et les graphiques peuvent être visionnés sur plein écran, tels qu’ils apparaissent à l’impression. On commence à créer des interfaces qui sont faciles à utiliser et d’autres devraient voir le jour avec la migration de la GDB vers une conception plus orientée vers l’objet.

Beaucoup des scientifiques du génome semblent préférer ACEDB (une base de données C. elegans), qui a été développée pour le projet de cartographie de C. elegans. Le programme est écrit en langage C et il est graphique, flexible et portable. Il existe deux modes d’utilisation principaux : en lecture seule, pour les personnes voulant consulter les données gérées par les bases publiques, et en mise à jour, pour ceux qui veulent stocker leurs propres données dans une copie locale de ACEDB. Cette dernière caractéristique est d’une très grande utilité. Certaines versions de ACEDB ont été utilisées pour les données sur le génome humain (ainsi que sur d’autres génomes) et ont permis d’enrichir l’aspect graphique de la Base de données génomique intégrée (voir ci-dessous).

La Banque de données génomique intégrée (IGD) est en train d’être développée à Heidelberg par un consortium financé par l’UE. Elle vise à regrouper de nombreuses bases de données différentes – et des ressources expérimentales aussi – en une base de données polyvalente citée, réalisée en parallèle à partir de technologies relationnelles (Sybase) et orientées-objet (ACEDB). Des tests sont à l’étude pour la mise à jour automatique de la nouvelle base de données à partir de ressources et de séries de données qui sont pour le moment réparties entre les bases de données de séquences d’ADN et de protéines, la GDB et les bases de données du CEPH et du Généthon. À terme, l’IGD inclura toutes les bases de données publiques majeures. Une spécialisation en cours de développement permettra aux utilisateurs de récupérer des données intéressantes et de les fusionner avec des données locales. La spécialisation permettra le stockage et l’accès instantané aux données extraites. Elle fournira une interface graphique facile à employer, des outils pour questionner, parcourir, analyser et modifier des données locales, ainsi qu’une interface pour les outils d’analyse externe et les outils pour la communication avec le monde extérieur. L’IGD fournira à l’utilisateur une vision uniforme sur une variété de ressources, chacune étant assemblée séparément. Il sera facile d’ajouter les nouvelles bases de données à venir.

On a besoin d’une base de données bien entretelue et accessible pour gérer les cartes physiques. La GDB projette d’en fournir une mais le modèle qu’elle n’a pas idéal. Le rapport du Bureau de la science et de la technologie (OST) du Royaume-Uni mentionné auparavant demande une révision majeure, voire un remplacement, de la GDB afin de faire face à ce problème.

Il y a une grande diversité de bases de données pour les autres génomes. La base de données principale pour la souris (Glimmer) utilise le logiciel Magc cas : les cartes du mouton et du cochon utilisent aussi le logiciel Glbase. Les données de l’EUCIB (bacillus de souris) sont dans Sybase et la carte de la vache dans Oracle. Toutes ces bases sont relationnelles. Les cartes de C. elegans, Arabidopsis, et Drosophila utilisent toutes ACEDB.

Le succès du PGH dépendra de la facilité avec laquelle les biologistes pourront avoir accès aux informations produites. Malgré de bons progrès, il faut continuer à améliorer les bases de données et les nombreux outils informatiques de stockage, d’analyse et de manipulation des données sur le génome.
L'identification de tous les gènes humains a dès l'origine été le but implicite du PGH. C'est à présent devenu le but explicite du programme américain. En effet, ce dernier cherche à développer des méthodes plus performantes pour identifier tous les gènes afin de pouvoir les toucher en utilisant les techniques de génétique, à la fois objectif et préventif.

4. Applications du Projet sur le génome humain

Compréhension des maladies

La raison d'être du PGH a toujours été d'apporter une contribution à la compréhension des processus à l'œuvre dans les maladies humaines, non seulement celles dues à des anomalies touchant un seul gène (tableau 8), mais aussi bien les maladies communes à des populations génétiquement multifactorielles (tableau 9). Cette compréhension mènera à terme au traitement et à la guérison.

Tableau 8. Fréquence en Europe de quelques maladies dues à des anomalies touchant un gène unique

<table>
<thead>
<tr>
<th>Maladie</th>
<th>Prévalence exprimée en fonction du nombre de malades</th>
<th>Précision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroviscidose</td>
<td>1/4 500</td>
<td>Expérience de vie rarement supérieure à 20 ans</td>
</tr>
<tr>
<td>Anémie falciforme</td>
<td>1/6 000</td>
<td>Général variable, souvent létale</td>
</tr>
<tr>
<td>Phénylcétonurie</td>
<td>1/15 000</td>
<td>Favorable si diagnostic précoce</td>
</tr>
<tr>
<td>Syndrome de Lesch-Nyhan</td>
<td>1/16 000</td>
<td>Dégénérations cérébraux et déminéralisation, génétiquement fixé</td>
</tr>
<tr>
<td>Bèta-thalassémie</td>
<td>1/7 000</td>
<td>Expérience de vie rarement supérieure à 20 ans</td>
</tr>
</tbody>
</table>

1. Pas fréquente chez les Européens, l'anémie falciforme (une anémie hémolytique) peut atteindre des fréquences de 1/100 pour certaines populations africaines, 1/1 000 pour les habitants du Cameroun et 1/2 000 pour les Nègres médicas.

2. Pas fréquente en Europe du Nord, la bêta-thalassémie (une autre anémie méditerranéenne) est répandue dans le bassin méditerranéen avec une fréquence maximale à Chypre (1 à 2/1 000).

3. L'étude du chondromélanome à tout âge de la maladie, avec une fréquence de 1/5 000 (1/7 000) de tous les malades.

L’étude du chondromélanome à tout âge de la maladie, avec une fréquence de 1/5 000 (1/7 000) de tous les malades.

Tableau 9. Maladies chroniques communes à composante génétique multifactorielle

<table>
<thead>
<tr>
<th>Maladie</th>
<th>Prévalence dans la population générale</th>
<th>Prévalence chez les parents des parents de personnes touchées par la maladie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulcère peptique</td>
<td>1/25</td>
<td>1/10</td>
</tr>
<tr>
<td>Arthrite rhumatoïde</td>
<td>1/50</td>
<td>1/20</td>
</tr>
<tr>
<td>Diabète sucré</td>
<td>1/1 000</td>
<td>1/33</td>
</tr>
<tr>
<td>insulin-résistant insulin-résistant</td>
<td>1/50</td>
<td>1/10</td>
</tr>
<tr>
<td>Maladie cérébrale infantile chez les personnes de moins de 65 ans</td>
<td>1/50</td>
<td>1/10</td>
</tr>
<tr>
<td>Psychoneurosis dépressive sévère</td>
<td>1/100</td>
<td>1/6</td>
</tr>
<tr>
<td>Epilepsie (grand mal)</td>
<td>1/200</td>
<td>1/25</td>
</tr>
</tbody>
</table>

L'approche biochimique pour comprendre les maladies a souvent été découverte, simplement parce que le diagnostic symptomatique, le point de départ de toute recherche clinique conventionnelle, est assez éloigné de l'anomalie primaire. L'approche génétique moléculaire offre des avantages appréciables. Une liaison génétique entre une maladie et un marqueur peut être utilisée pour cerner le locus de cette maladie, c'est-à-dire le gène causant une maladie simplement par sa position et non par la connaissance de la protéine qu'il produit (clonage positionnel). Le PGH est en train d'accélérer grandement le processus de découverte de gènes. La disponibilité des cartes génétiques et physiques a rendu la chasse aux gènes de maladies plus rapide et facile. La technique de clonage positionnel s'applique également aux maladies multifactorielles si le matériel familial adéquat est disponible. De nombreux gènes ont été localisés simplement par analyse de séquences — mais dans ce cas-là, il n'est pas facile d'assigner une fonction. La découverte de gènes de maladies, toutefois, ne représente que le premier pas d'un processus quelquefois laborieux (figure 2).

Diagnostic et dépistage

Une fois que les gènes, et les mutations cliniques, sont identifiés, les diagnostics basés sur l'ADN peuvent être appliqués de diverses façons dans le domaine des soins de santé.

Diagnostic du risque

Le PGH va énormément accroître le nombre d'affections ou de maladies pour lesquelles il est possible de diagnostiquer un risque ou son absence. Le grand problème à surmonter est l'intervalle souvent énorme entre la capacité de diagnostiquer une maladie et le développement d'interventions efficaces. Toutefois, il y a des désordres où la connaissance du risque offre la possibilité d'éviter la pathologie grâce à un changement de style de vie. Par exemple, on s'abstient de fumer si l'on se savait déficient en
Figure 2. De l’identification du gène à la guérison de la maladie

<table>
<thead>
<tr>
<th>Identification du gène</th>
<th>Thérapeutique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Développement de tests de diagnostic</td>
<td>Découverte du défaut de base</td>
</tr>
<tr>
<td>Test sur les porteurs</td>
<td>Description de la pathologie</td>
</tr>
<tr>
<td>Dépistage</td>
<td></td>
</tr>
</tbody>
</table>

Guérison

alpha-1-antitrypsine. Plus récemment, il a été rapporté qu’il existait deux formes d’une enzyme métabolisant l’alcool dans le foie, l’une d’entre elles augmentant grandement la susceptibilité aux maladies du foie liées à l’alcool ; dans ce cas une absorption d’alcool modérée serait conseillée. On est sûr de trouver encore beaucoup d’exemples de ce type.

Dépistage

Le dépistage de maladies à la fois infectieuses et héritières connaît une longue histoire. Dans le domaine des maladies héritières, le dépistage néonatal est commun pour des maladies telles que la phénylcétonurie et l’hypothyroïdie. Les tests de dépistage pour les nouveau-nés sont actuellement fondés sur la détection de métabolistes ; l’emploi de tests basés sur l’ADN clarifierait le nombre de maladies identifiables, et à moindre coût. Il y a d’autres maladies où la pathologie progresse dès la naissance (comme la mucoviscidose) et où la thérapie génique commence à donner des espoirs. Plus les corrections génétiques de ces maladies seraient apportées précocement, plus les chances de vie seraient grandes : avec l’avènement des possibilités d’intervention, le dépistage néonatal est voué à prendre de plus en plus d’importance.

Le diagnostic de maladies héritaires se déclenchant chez l’adulte offre la possibilité de réduire la morbidité ou la mortalité, comme pour la maladie polycystique du rein de l’adulte qui est l’une des formes les plus communes parmi les défauts rénaux héritaires. (Il y a un problème toutefois pour des maladies telles que celle de Huntington, qui peuvent être détectées plusieurs années avant l’apparition des symptômes mais pour lesquelles il n’y a pas de traitement à ce jour.) Avec le temps, les diagnostics fondés sur l’ADN pourront servir à détecter les individus ayant un haut risque de développer un cancer, ou à détecter les premiers signes d’un cancer bien avant que les symptômes n’apparaissent, et offrirai ainsi la possibilité d’une intervention efficace.

Le programme le plus connu de dépistage de porteurs parmi les jeunes adultes est le programme de l’OMS sur la thalassémie, initié il y a plus de 20 ans, qui a réduit l’incidence de la maladie d’environ un facteur 20. Le succès de ce programme est dû en grande partie à sa réception favorable dans la population dépistée et cela grâce à l’importance accordée à la liberté de décision sur la contraception de la part des individus ou des couples concernés, à leur droit d’être bien informés et à la confidentialité. Selon l’OMS, « la liste des services de génétique médicale est d’aider les personnes atteintes d’un désavantage génétique à vivre et à se reproduire le plus normalement possible ». Une vingtaine d’années après, une expansion considérable du dépistage génétique est devenue possible grâce aux avancées en génétique moléculaire ainsi qu’en procréation assistée. Les gènes des maladies monogéniques les plus fréquentes, telles que la mucoviscidose, ont été découverts. Les couples à risque de maladie génétique dans leur descendance ont maintenant plus d’options pour les choix de procréation — y compris la fécondation in vitro et le don d’embryon — qu’ils n’avaient il y a deux décennies. Actuellement, la faisabilité (et l’utilité) des dépistages de la mucoviscidose basés sur l’étude des populations est examinée aux États-Unis et ailleurs.

Les développements futurs dans le domaine du diagnostic et du dépistage incluront sans doute l’analyse des loci de maladies multiples, peut-être grâce à l’utilisation de « puce d’ADN » qui pourront détecter un grand nombre d’altérations simultanément et les interpréter automatiquement. (Des précautions pourraient être nécessaires afin d’éviter de forcer les individus à utiliser toutes les technologies disponibles pour l’évaluation de risques et pour la prévention.) En définitive, il pourrait être possible de diagnostiquer les risques de susceptibilité aux maladies, généralement les plus communes, ayant une composante génétique ainsi qu’environnementale.

Pathologie et thérapie

L’explication de la pathologie et de la progression d’une maladie peut ne pas être évidente. Une unité clinique unique (l’axiome de Friedrich par exemple) peut être causée par des anomalies touchant plus d’un gène ; d’un autre côté, différents syndromes cliniques peuvent provenir de différentes mutations dans un même gène. La progression de la pathologie vers l’intervention thérapeutique est encore plus difficile.

Néanmoins, la connaissance de l’anomalie responsable — en particulier la nature et le spectre de mutations dans le gène — peut donner des indices quant au défaut de la fonction biochimique. Une compréhension analytique de la pathogenèse en découlera et avec elle, la perspective de conception rationnelle d’agents thérapeutiques. Actuellement, trop de drogues traitant les symptômes d’une maladie au lieu de modifier directement le problème moléculaire.

Une fois qu’il existe la preuve absolue qu’un gène particulier est responsable d’un désordre, cela ouvre la possibilité d’une thérapie génique, c’est-à-dire de remplacer le gène defectueux dans le tissu affecté par une version normale. En corrigeant le défaut de
base et en restaurer le métabolisme normal, la thérapie par remplacement de gènes (somatices) offre des promesses considérables pour le traitement de nombreux désordres touchant un gène unique. Un grand nombre de méthodes utilisées actuellement en sont encore à un stade de développement assez primitif et tous les problèmes sont loin d’être réglés. Les questions aussi bien sur l’efficacité que sur la sécurité à long terme restent posées.

Bien que le traitement des maladies héréditaires soit l’application la plus évidente de la thérapie génique, ce n’est pas la seule. Celle-ci peut être utilisée pour traiter les désordres acquis, tels que le cancer, par modification génétique des cellules tumorales ou alors grâce à des cellules modifiées infiltrant la tumeur. En fait, parmi les quelque 70 essais de thérapie génique en cours dans le monde, la majorité concerne le traitement de cancers pour lesquels il n’y a pas d’autres soins. (Ceux-ci sont bien sûr les plus simples à justifier.)

L’idée de thérapie génique pour les maladies multifactorielles et les désordres acquis, dont les maladies infectieuses, gagne du terrain. Le jour où il sera possible de disposer d’une thérapie génique pour les maladies communes de préférence par un traitement unique, efficace tout au long de la vie — alors l’ère de la médecine moléculaire sera vraiment arrivée.

Le projet sur la diversité du génome humain

En 1991, un groupe composé de généticiens des populations et de biologistes moléculaires proposèrent à la communauté scientifique d’entreprendre une étude mondiale de la variation du génome humain. Une fois la complexité de la tâche révélée, il fut décidé de tenir une petite série d’ateliers internationaux pour explorer les principaux problèmes scientifiques et définir un cadre qui pourrait servir de base à une planification plus détaillée. Il fut reconnu que la mise en œuvre du projet proposé, maintenant appelé le Projet sur la diversité du génome humain (HGD), n’était qu’à ses débuts, devait impliquer non seulement des sciences mais aussi divers groupes non scientifiques, à la fois nationaux et internationaux. L’atelier international HGD tenu en Suisse en septembre 1993 fut le dernier de la série initiale d’ateliers de planification ; les conclusions ont été publiées par HUGO à la fin de 1994, sous le titre « Document de synthèse relatif au Projet sur la diversité ».

Objectifs

L’objectif du Projet HGD est d’appliquer les outils puissants de l’analyse de la génétique moléculaire à une étude systématique des populations humaines et d’arriver à une définition bien plus précise de leurs origines. Comme le dit spécifiquement le document de synthèse, le projet vise à :

- étudier la variation du génome humain en étudiant des échantillons recueillis dans des populations représentatives de tous les peuples du monde.
- en définitive, créer une ressource au bénéfice de l’humanité dans son ensemble et de la communauté scientifique mondiale. La ressource sera une collection d’échan-

tillons biologiques représentative de la variation génétique des populations humaines à travers le monde et, en même temps, une base de données ouverte, à long terme, sur la génétique et les statistiques des variations dans l’espèce humaine, qui se développera à mesure que les scientifiques du monde entier étudieront les échantillons.

L’échantillonnage des populations

Le Projet HGD ne s’intéresse pas seulement aux peuples « indigènes » de chaque région. Les organisateurs sont bien conscients que « quelle que soit la méthode choisie pour sélectionner les populations, le résultat sera... presque certainement controversé ». Celles choisies comprennent des populations qui sont uniques du point de vue anthropologique, qui sont isolées de point de vue linguistique, qui risquent de perdre leur identité en tant qu’unité génétique, ou qui pourraient apporter des informations précieuses sur l’éthologie génétique de maladies importantes. Les organisateurs reconnaissent aussi que les informations générées doivent éclairer des questions qui intéressent les généticiens, les anthropologues, les historiens ou les populations elles-mêmes.

Les informations à recueillir n’ont été identifiées qu’en termes généraux. Les chercheurs individuels auront sans doute leurs propres objectifs analytiques ; on pense aussi que les objectifs du projet « sont susceptibles d’évoluer dans le temps ». Cependant, tous les échantillons recueillis et étudiés seront testés pour toute une série de marqueurs de base, qui seront définis au cours d’une étude pilote.

Gestion

Un comité (actuellement le Comité exécutif du HGD) a pris forme au cours des ateliers de planification et il est devenu un comité de HUGO. II a deux sous-comités (Base de données et Éthique) et a l’intention d’encourager la formation de dix ou douze comités régionaux par des chercheurs qui travaillent sur le Projet HGD. Deux sont déjà formés pour l’Amérique du Nord et pour l’Europe. Le Comité exécutif a déjà préparé des principes généraux pour les chercheurs qui envisagent de produire un rapport sur la façon dont ils veulent participer au projet. Ses priorités immédiates sont :

- l’identification d’une série de marqueurs standard ;
- le développement de logiciels pour les bases de données ;
- l’établissement d’installations pour des banques de cellules et d’ADN.

Questions éthiques

Les implications éthiques du Projet HGD couvrent beaucoup de terrain ; les organisateurs et le Comité éthique de HUGO s’y sont longuement penchés. Mais des incertitudes persistent.

La première question concerne la confidentialité. Il y a dans le monde des lieux où il est dangereux, et parfois extrêmement dangereux, d’être considéré comme membre d’une tribu ou d’un groupe linguistique non dominant. Il faut s’assurer que tous les individus seront recensés de manière à protéger la confidentialité de communauté entière, ce qui est une tâche redoutable.
La nécessité d’obtenir un consentement éclairé est une condition évidente – et dans beaucoup de pays, la loi y oblige – mais pas toujours facile à satisfaire. Les organisateurs de HUGO proposent d’informer les populations sélectionnées de la « procédure de collecte et des objectifs de base du projet » et de « donner une certaine connaissance des objectifs analytiques spécifiques ». La manière d’évaluer leur degré de compréhension n’est pas claire. Cela pourrait justifier une autre étude pilote. Ainsi, la collecte des échantillons avant que les procédures analytiques ne soient définies pourrait aller à l’encontre des exigences de certains pays en ce qui concerne le consentement éclairé.

La question du dépistage des maladies doit être résolue. Est-il obligatoire ? Est-il acceptable, du point de vue déontologique, d’entreprendre le dépistage sans assurer un suivi ? Qui doit être informé des résultats ? S’il y a dépistage de maladie, est-on obligé de fournir un traitement ?

Les droits de propriété intellectuelle posent d’autres problèmes. Le Projet HGD pourrait mener au développement de produits pharmaceutiques ou de valeur commerciale, auquel cas il devrait y avoir un certain retour financier aux populations étudiées, trop souvent dans le passé, c’est le contraire qui est arrivé – des développements auxquels des populations indigènes contribuent leur faire ensuite vendus à des prix élevés.

Il est souhaitable de résoudre autant de ces questions que possible avant d’entreprendre la collecte des échantillons.

La proposition du Projet HGD a généré quelques controverses. Certaines agences et certains corps délibérants estiment que les questions éthiques restent à résoudre. D’autres considèrent le projet sur la diversité comme l’une des revendications inattendues du PGH – sans être pour autant la plus prégnante ou importante – mais certainement pas comme une partie intégrante de « l’effort global sur le génome humain ».

5. Portée socio-économique du Projet sur le génome humain

Transfer de technologies

Toute découverte résultant du PGH et représentant un bénéfice potentiel pour le diagnostic ou la thérapie des maladies doit être développée et appliquée ; ceci est un article de foi. Néanmoins, lors du commencement du projet, sa valeur économique a été largement contestée. Un premier essai qui avait tenté de créer une entreprise de cartographie de gènes a même provoqué de vifs débats sur le mariage des intérêts commerciaux et la recherche sur le génome.

Pendant les trois dernières années, l’intérêt n’a cessé de grandir, comme en a d’abord témoigné le nombre d’entreprises impliquées dans les essais de thérapie génique, soit en collaboration avec des chercheurs universitaires, soit seules. Par exemple, trois compagnies américaines plus une quatrième en France sont engagées dans des essais de thérapie génique de la microcéphalie. Tous ces essais tendent d’introduire du matériel génétique directement dans les poumons et les cavités nasales des patients – une stratégie appelée thérapie génique « in vivo ». Les premières méthodes – qui consistent à insérer des gènes dans des cellules en culture et de réintroduire les cellules modifiées dans le patient – sont appelées « ex vivo ». La stratégie ex vivo est plus complexe et sera sans doute limitée aux centres médicaux spécialisés. La thérapie génique in vivo (si elle réussit) aura la possibilité de se faire dans des conditions cliniques ordinaires ; elle présenterait donc un plus large intérêt commercial.

Ces dernières années, on a pu voir un vaste accroissement de l’intérêt, surtout de la part des financiers du risque (« venture capitaliste »). De nouvelles entreprises impliquant de nombreux scientifiques de pointe travaillant sur le génome aux États-Unis et en Europe sont en train de se créer. On estime qu’en 1993, les investissements privés dans de telles entreprises aux États-Unis ont atteint environ 85 millions de dollars – c’est-à-dire la moitié du financement du gouvernement américain pour le PGH. Les raisons premières de cet intérêt semblent être de deux types. D’une part, les progrès dans la découverte des gènes de maladies et la richesse des informations sur les séquences s’accumulent. D’autre part, il y a une prise de conscience du vaste potentiel du PGH, encore virtuellement inexploité, pour la production de diagnostics et de thérapeutiques. Les entreprises peuvent être divisées en trois groupes ; celles ayant l’intention de faire du séquençage ou de la cartographie à grande échelle (souvent sur contrat); les entreprises de biotechnologie qui peuvent être de « biogénétique » ayant l’intention de développer des thérapies ; et celles ayant l’intention de développer une nouvelle génération de technologies de séquençage. Une brève description de quatre d’entre elles est donnée ci-dessous.

TIGR (L’Institut pour la recherche génomique)

Le TIGR est une entreprise sans but lucratif dirigée par le scientifique Craig Venter, un ancien du NIH, dont les séquences partielles d’ADNc ont été à la base de demandes de brevet par le NIH. Elle continue à séquencer les ADNc et à nouveaux les séquences (partielles) d’entre 80 et 90 pour cent des gènes humains. Venter est libre de publier ses résultats. Le TIGR a annoncé qu’il déposerait des demandes de brevet pour les gènes qu’il souperonner de jouer un rôle important dans le diagnostic et la thérapie. Sa course pour obtenir des séquences partielles de tous les gènes semble indiquer que celles-ci fourniront une sorte de statut de propriété.

Le TIGR est financé par 70 millions de dollars venant de la société Human Genome Sciences Inc., qui possède des droits exclusifs sur la propriété intellectuelle générée par le TIGR. SmithKline Beecham a annoncé une collaboration avec Human Genome Sciences, en conséquence de quoi (pour une somme non divulguée mais selon des diras entre 125 et 175 millions de dollars) SKB a obtenu les droits sur les diagnostics, les vaccins et les thérapeutiques par petites molécules, à partir des données de séquences de gènes du TIGR ; Human Genome Sciences garde les droits sur la thérapie génique et les anti-sens.

SKB prévoit, dit-on, que les nouveaux tests de diagnostic moléculaire créeront un changement majeur pour les soins de santé en accentuant la prédiction et la prévention des maladies, plutôt que les traitements seuls.
Darwin Molecular Corporation

Darwin diffuse des autres initiatives récentes en ayant une stratégie claire pour le développement de nouveaux agents thérapeutiques, qu'elle compte commercialiser d'ici cinq ou dix ans. Darwin séquestrera les gènes du génome d'importance médicale (tous en étant à l'avant-garde de nouvelles technologies de séquençage d'ADN plus rapides) en vue d'identifier les cibles thérapeutiques prometteuses. L'énorme quantité de séquences obtenue sera soumise à une analyse mathématique assistée par ordinateur : des programmes de reconnaissance de motifs révèlent les ressemblances structurales entre des gènes inconnus et des gènes connus apparentés. Darwin développe aussi de nouvelles capacités informatiques ; la société suggère que la conversion d'informations unidimensionnelles de séquences d'ADN en informations tridimensionnelles de protéines devrait permettre la conception rationnelle de médicaments tout en évitant la lourdeur et la lenteur de la cristallographie des protéines. Une fois les protéines ciblées trouvées, Darwin utilisera la chimie combinatoire pour produire des collections de petites molécules candidates à servir de médicaments. Les « meilleures » molécules sont « développées » par l'utilisation successive d'expériences de liaison et autres - au cours d'un processus appelé « évolution moléculaire ».

L'intérêt des petites molécules est d'offrir des avantages médicaux et commerciaux considérables - parmi lesquels la possibilité d'administrer par voie orale ainsi que la facilité de fabrication - par rapport aux protéines de haut poids moléculaire qui sont à ce jour les principaux produits de la biotechnologie. Darwin consacrera ses efforts initiaux aux cibles - enzymes ou récepteurs - associées aux cancers, au SIDA et aux maladies auto-immunes telles que la sclérose en plaques. La société projette de faire des arrangements de licence avec les grandes entreprises de biotechnologie ou les entreprises pharmaceutiques traditionnelles pour ses produits majeurs. Les licences et la vente de ces premiers produits seront utilisées pour financer le développement de Darwin en entreprise pharmaceutique indépendante.

Sequana Therapeutica Inc.

Sequana projette de rechercher les gènes à la base de plusieurs maladies multifactorielles à composante héréditaire. Les cibles initiales incluent l'ostéoporose : le projet consiste à cartographier les gènes chez une colonie de babouins (attestés d'ostéoporose) à l'Université Southwestern au Texas et de chercher ensuite les homologues humains. Sequana va aussi utiliser les souris uniques de souris obèses provenant du Laboratoire Jackson pour cartographier et cloner les gènes responsables de plusieurs phénotypes obèses. La calvitie est une autre cible. Sequana a aussi indiqué qu'elle prévoit un large marché du diagnostic dans le nouveau domaine de la « pharmacogénétique » - c'est-à-dire les tests de non-réponse à certains médicaments.

Millenium Inc.

La technologie au cœur de cette entreprise est le « criblage des mésappariements génomiques », un procédé développé à Stanford (chez la leuven) qui accèlère la cartogra-
La simplicité de l'approche — séquencer 300 bases de chaque clone d'ADNC — signifie qu'un grand nombre de ces séquences partielles (ou MES) peut être produit. Comme il est dit plus haut, la course se situe au niveau de l'obtention des séquences partielles de tous les gènes. Quelques-uns de ces MES sont dans le domaine public, notamment ceux générés en France et au Royaume-Uni, mais le travail s'est largement effectué dans le secteur privé; il en résulte que la plupart de ces séquences sont gardées secrètes, comme le sont les localisations des MES sur la carte. Il doit y avoir une redondance croissante à l'intérieur et entre les collections diverses de séquences partielles et de ce fait — à terme — une possibilité de dispute sur la priorité et le droit de propriété. On peut noter que le Laboratoire national de Los Alamos se perche sur la possibilité de développer une banque de données (CDNA Inform) visant à réduire les redondances en permettant aux producteurs de MES de soumettre, de façon privée et confidentielle, de nouveaux MES afin de les comparer aux séquences existantes et de pouvoir répondre à la question : « Y a-t-il quelqu’un travaillant sur le même ? »

On peut noter deux développements intéressants : d’une part, Merck a lancé un projet destiné à produire un MES pour chaque gène humain exprimé, et à rendre tous ces MES librement accessibles ; d’autre part, le TIGR a l’intention de rendre publiques les informations sur un assez grand nombre de ses MES.

La tentative de breveter les MES pourrait bien appartenir au passé, même si on ne sait pas à quel point les firmes privées suivront cette stratégie. Mais elle a attiré l’attention sur l’existence d’un problème, décrit lors d’un atelier européen en ces termes :

« ... le manque regrettable de tout accord international, négocié au niveau des gouvernements ou des agences nationales, sur le partage des données. On l’eût peut être surpris que les États-Unis n’aient pas entrepris de telles négociations, dans le cadre de discussions sur la collaboration internationale, par rapport au méga-séquençage ou au financement des bases de données par exemple. »

Ce même atelier européen a constaté que la production d’une séquence fragmentaire ne devrait pas conférer en soi des droits sur le gène parental. Toutefois, Human Genome Sciences Inc. (HGS) a utilisé sa propre base de données sur les MES (donc une base privée) pour obtenir des droits de propriété intellectuels (PI). Les scientifiques peuvent utiliser cette base de données à condition de conclure, à l’avance, un accord sur les droits de PI avec les HGS. Le premier cas a été rapporté dans le Wall Street Journal en mars 1994 : les HGS a déposé une demande de brevet pour un gène de cancer du colon localisé à l’aide de sa propre base de données. Des généticiens à l’Université Johns Hopkins savaient que le gène défectueux qu’ils recherchaient était similaire à certains gènes de levure et de bactérie. Une recherche dans la base de données de HGS de 40 000 séquences d’ADNC partielles/ complètes a révélé un gène candidat : les généticiens de Johns Hopkins ont pu montrer qu’une mutation dans ce gène candidat causait en effet le cancer. La situation à propos du brevet n’est pas tranchee, vu que les scientifiques de Johns Hopkins ont aussi déposé une demande de brevet de plus, la découverte du même gène par une approche différente a été rapportée presque simultanément par un autre groupe.

La question ne pose alors de savoir à quel moment on peut breveter pendant que l’on s’enrichit en informations sur le clone représenté par un MES. Une séquence complète d’ADNC ayant une utilité démontrée semblerait satisfaire les critères actuels. Aussi bien aux États-Unis qu’en Europe, les séquences d’ADNC avec une fonction utile prouvée présentent des conditions requises pour une protection par brevet. Des brevets ont déjà été attribués à des gènes pour lesquels la demande établissait une relation entre la séquence d’ADN et l’utilisation du gène ou du produit protéique. Les demandes de brevet pour les gènes sont de toute évidence de plus en plus nombreuses, en raison des découvertes croissantes liées au PCH.

La question générale du contenu relatif à la PI des séquences d’ADN de grande envergure (c’est-à-dire pas uniquement des fragments) doit être posée. L’être du séquençage de masse n’est pas loin : des accords sur la PI et – de façon sans doute plus importante – des accords sur le dépôt de séquences dans les banques de données publiques – sont nécessaires, ou alors le problème des MES pourrait se répéter. Il est probable que, au moins aux États-Unis, le séquençage à la chaîne sera entrepris par des firmes commerciales. Lors d’une réunion à Hunt Valley, Maryland, au cours de l’examen du programme américain en 1993, il a été avancé que les entrepreneurs commerciaux seraient plus intéressés par le séquençage s’ils avaient des droits de PI (non spécifiés).

La croissance du nombre de publications et de la quantité de connaissances sur les séquences d’ADN et sur les technologies fondamentales va grandement réduire le nombre de demandes de brevets concernant les séquences d’ADN en soi. Quelques scientifiques du génome aiment voir ce processus s’accélérer, avec l’abandon des revendications sur les séquences d’ADN mais en gardant la possibilité de brevets « de processus » [c’est-à-dire un brevet sur la (ou les) utilisation(s) du gène]. Cela nécessiterait, évidemment, un accord international.

Le brevetage des gènes humains a aussi été contesté pour des raisons d’ordre moral. Beaucoup de personnes pensent que, avec conviction, que, par principe, l’ADN humain ne devrait pas être brevetable ; c’est aussi le point de vue de quelques comités de bioéthique. Les brevets ne sont pas octroyés aux inventions jugées moralement choquantes : en Europe, il y a une opposition persistante au brevetage des souris transgéniques par exemple. Dans certains pays, il pourrait y avoir de l’opposition aux brevets sur des produits en aval du PCH. Il est essentiel qu’un débat éclairé et lucide qui prendra en compte la valeur des droits de PI pour faciliter la divulgation ouverte des informations et, en même temps, pour encourager les investissements dans la recherche et le développement.

La collaboration entre l’industrie et la recherche universitaire pouvait se resserrer grâce à deux mesures importantes. La première concerne le « dégagement au droit de brevet pour la recherche » qui existe dans les lois sur les brevets de nombreux pays et qui permet à l’invention d’être utilisée à des fins privées, ou pour des objectifs de recherche, sans empêcher le brevet. La plupart des chercheurs sur le génome considèrent que cela serait d’une grande aide au PCH si l’on pouvait appliquer cette mesure le plus largement possible en incluant pratiquement tout — même les essais cliniques — jusqu’à la commercialisation non comprise. L’autre question concerne les brevets pour les technologies génériques, telles que la PCR. De tels brevets sont de plus en plus nombreux (par exemple,
par rapport aux brevets des produits dérivant de la technologie). L'octroi de licences d'autorisation de sujétions est important.

Il existe des programmes majeurs de cartographie du génome du cochon, de la vache, du mouton et du poulet, ainsi que des programmes de séquençage/cartographie du riz, du maïs, du blé et de certains arbres. Aussi bien en agriculture qu'en horticulure, le but ultime est l'obtention de souches améliorées et de rendements augmentés. Les objectifs de la recherche et les considérations de PI diffèrent nettement de ceux pour le génome humain. Le brevetage a des chances de jouer un rôle important et d'être relativement peu controversé.

6. Implications éthiques, sociales et juridiques

Introduction

Le programme américain, et plus tard le premier programme de l'UE, ont décidé qu'une partie de leur budget devait être allouée à une réflexion visant à :
- examiner les conséquences éthiques, juridiques et sociales de la cartographie et du séquençage du génome humain ;
- anticiper les implications de la cartographie et du séquençage du génome humain pour les individus et la société et en débattre ;
- stimuler des discussions publiques sur ces questions ;
- développer des options politiques qui assurent que les informations soient utilisées pour le bien des individus et de la société.

Les programmes qui en ont révélé ont été appelés "AJES". Plusieurs instances délibérantes dans le monde ont aussi débattu de ce thème. Ces dernières sont parvenues à un certain consensus sur les questions majeures, dont quelques-unes sont décrites ci-dessous.

Diagnostic et dépistage

Le résultat le plus immédiat du PGH sera la localisation et l'identification de nombreux nouveaux gènes de maladies. La première inquiétude concerne l'utilisation de ces informations pour diagnostiquer des maladies (ou la prédistribution à celles-ci) et l'effet que cette information aurait sur la personne. Un individu a le droit d'accéder aux informations qui peuvent concerner sa propre santé ou celle de sa descendance ; il peut aussi exprimer le désir ferme de ne pas savoir. Il est cependant important d'avoir une pleine connaissance des risques liés au fait de ne pas savoir. Les intérêts des autres membres de la famille et des parents doivent aussi être pris en considération. Dans certains cas, la connaissance de la constitution de l'ADN d'un individu peut être essentielle pour le diagnostic et la prévention chez un parent. Il est important néanmoins de ne pas forcer quelqu'un à accepter des informations sur sa constitution génétique qu'il ne désire pas connaître. Pousser un individu à utiliser toutes les technologies disponibles pour l'estimation et la prévention des risques - « l'impératif technologique » - est une attitude qui devrait être évitée à tout prix.

Comme il est dit plus haut, le dépistage des maladies n'est pas une chose récente ; l'OMS a publié un code d'utilisation en 1968. Toutefois, on peut s'inquiéter de l'utilisation des tests qui prédisent les invalidités futures ou bien le risque d'invalidité. Un jour les tests génétiques liés à des conditions assez largement répandues pourraient être généralement disponibles. On connaît très peu de choses sur la réaction des gens aux informations sur le niveau de risque intrinsèque. D'un côté, les informations peuvent offrir l'opportunité de changer leur style de vie pour réduire les risques, mais de l'autre, elles pourraient affecter de manière négative l'image qu'ils ont d'eux-mêmes.

L'utilisation des informations génétiques pour les choix de procréation

Ici aussi, les questions ne sont pas récentes ; elles sont soulevées régulièrement aujourd'hui dans la pratique de la génétique clinique. Les principes clés du conseil génétique (comme la Société américaine de génétique humaine les définissent) incluent :
- la liberté de l'individu ou du couple de décider ;
- leur droit aux informations complètes ;
- la confidentialité.

On peut résumer cela par équité, justice et honnêteté et le droit de faire un choix éclairé.

Scéles les personnes directement impliquées devraient prendre la décision ; on ne devrait pas imposer de contraintes, et la société devrait accepter le fait qu'il y aura une gamme étendue de choix. Que les parents choisissent l'avortement ou bien d'avoir un enfant handicapé, ils ont droit à la tolérance et à la compréhension de la part des autres membres de la société qui eux-mêmes auraient pris des options différentes.

Les handicaps

Des inquiétudes ont été exprimées vis-à-vis du diagnostic prénatal et de l'avortement sélectif, pratiques qui pourraient mener à une stigmatisation des handicapés. Toutefois, toutes les anomalies génétiques ne peuvent pas être diagnostiquées de façon prénatale : leur incidence diminuera sans doute mais elles ne disparaîtront pas. D'autre côté, les perspectives de survie du handicap jusqu'à la vie adulte sont en constante progression. On peut aussi s'inquiéter du sort des parents qui font le choix éclairé d'avoir un enfant handicapé ; ils pourraient être pénalisés, par exemple en ayant à subvenir seuls aux frais de soins.

Confidentialité des informations génétiques personnelles

Avec l'avancée des techniques telles que la PCR, les échantillons biologiques prélevés dans des buts cliniques de routine (comme les prises de sang) deviennent des mines potentielles d'informations génétiques. Dans certains pays, le consentement éclairé prend en compte l'approbation des utilisations que l'on fera de l'échantillon, celles-ci ne pouvant être étendues sans consultation spécifique avec le patient ; mais cette procédure de sécurité pose d'autres problèmes. On a besoin d'une politique sur l'obtention, le stockage et la destruction ultime des spécimens biologiques.
Toutes les informations génétiques ne sont pas sensibles, comme par exemple la susceptibilité génétique à un accès d’une particularité. Mais pour le type d’informations génétiques qui ont une valeur prédictive, il existe des raisons très légitimes à la confidentialité, même si des conflits d’intérêts peuvent surgir. Comme on l’a dit plus haut, il faut bien réfléchir aux informations que l’on met à disposition des membres d’une famille. Des critères diffèrents, et plus stricts, doivent être appliqués à la révélation des informations génétiques, aux employeurs par exemple.

Tests génétiques sur le lieu de travail

On entend ici à la fois le suivi génétique, c’est-à-dire le fait de tester les employés et de rechercher des changements induits au niveau de leur matériel génétique, et le dépistage génétique, qui consiste à identifier les individus ayant des caractéristiques héréditaires particulières. Le suivi génétique des employés, concernant les possibles effets toxiques de substances rencontrées sur le lieu de travail, peut fournir une meilleure compréhension de la relation entre l’exposition au produit et la maladie. Des garde-fous pourraient peut-être être nécessaires mais les intérêts des employés ne sont pas menacés.

Le dépistage génétique peut être utilisé de deux façons. Les employés potentiels pourraient être dépistés pour leur susceptibilité à une maladie du travail particulière ; si cela est utilisé pour s’assurer que les travailleurs susceptibles ne sont pas placés dans un environnement à risque, les bénéfices sont évidents. Il ne serait pas acceptable en revanche que le dépistage soit utilisé en tant qu’alternative à l’amélioration de l’environnement de travail.

Deuxièmement, le dépistage génétique pourrait servir à détecter les affections héréditaires en général, pas uniquement celles associées au travail. Aux États-Unis, on craint que les employeurs puissent vouloir appliquer des tests génétiques à but d’exclusion de façon à limiter le coût des cotisations de santé. En général, on considère inacceptables les tests de recherche de maladies à déclenchement tardif en tant que condition préalable à l’accès au travail, bien que dans certains cas, des inquiétudes sur la sécurité du public ou des collègues de travail puissent suggérer le contraire.

L’utilisation des informations génétiques par rapport aux assurances

L’assurance-vie, ainsi que d’autres formes d’assurances personnelles, sont communément une affaire de choix. De nombreuses instances ont délibéré sur l’utilisation des informations génétiques personnelles par rapport aux assurances-vie et ils ont conclu que cela posait des problèmes de discrimination envers les personnes à risque génétique et que cela ne devrait pas être permis. Toutefois, ces instances ne semblent pas avoir entièrement pris en compte les principes de souscription aux assurances. Les demandeurs d’assurances sont répartis par groupes selon leur âge et leur sexe. Le risque supplémentaire par rapport à celui estimé pour le groupe est calculé en fonction du passé médical (comme une haute pression sanguine), du style de vie (fumeur, par exemple) et du passé familial (morts précoces, maladies génétiques par exemple). Le risque supplémentaire se reflète dans des primes augmentées de façon à ce que la totalité des primes du groupe soit le reflet du risque couvert, c’est-à-dire le risque alléatoire de mort.

L’un des principes fondamentaux des assurances est la symétrie des informations entre l’assureur et le demandeur. Une stratégie qui impliquerait l’abandon de ce principe et l’acceptation d’assurer sans connaissance des risques menacerait certainement à la souscription d’assurances « mauvais risques » pour des sommes plus grandes que la moyenne, processus appelé « sélection défavorable ». Cela marquait pour conséquence une modification des bases de calcul des risques qui ne seraient plus adaptées aux conditions réelles, une augmentation des primes standard et une perte du point de vue de l’actuarial. Au pire des cas, la perte serait si forte que la compagnie ferait faillite ; le plus probablement il en résulterait une augmentation des primes pour les nouveaux souscripteurs, et du coup, moins de gens pourraient prétendre aux assurances. Dans l’optique d’éviter la discrimination contre un groupe, les autres seraient désavantagés.

Dans la pratique, il existe des offres de produits d’assurances – pour des sommes limitées, à des taux très avantageux – pour lesquels peu de questions sont posées aux demandeurs. La plupart des gens, cependant, désirent fournir plus d’informations de façon à réduire leurs primes. Il est difficile d’envisager la disparition de ce soubt. D’un autre côté, il semble peu probable que les compagnies d’assurances demandent des tests basés sur l’ADN comme condition préalable à la couverture, à moins que ou jusqu’à ce qu’ils deviennent plus abordables.

Thérapie génique

La thérapie génique de cellules somatiques ne soulève, en principe, aucun problème et pourrait offrir le meilleur espoir de traitement de certaines maladies héréditaires.

La thérapie génique touchant la lignée germinale soulève des profondes questions éthiques et sociales. Il y a énormément d’objections et d’inquiétudes concernant la sécu-
rité, les changements dans le répertoire des gènes humains et les implications « eugénica
eres ». On s’accorde en général pour trouver cette thérapie inadmissible pour le moment.

Discussions publiques et éducation

La seule façon d’empêcher le mauvais emploi des informations génétiques est de s’assurer que leur signification – en particulier leur potentiel et leurs limites – soit conven-
nablement comprise. L’éducation doit être une priorité.
7. S'agit-il d'un mégaprojet ?

Les critères de l'OCDE pour la mégascience

La définition large d'un projet mégascience (ou mégaprojet) est une initiative scientifique englobant les équipements, les instruments, les ressources humaines et le support logistique nécessaires pour aborder une série de problèmes scientifiques d'une importance, d'une portée et d'une complexité telles qu'ils nécessitent un effort inhabituel de collaboration à grande échelle.

Cette définition a été adoptée par l'Atelier américano-européen en novembre 1991 et par la réunion au niveau ministériel de l'OCDE en mars 1992 ; ces deux instances se sont aussi mises d'accord sur la division des projets mégascience en deux catégories :

i) ceux nécessitant la conception et la construction d'équipements centralisés ;

ii) les mégaprojets dispersés, eux-mêmes subdivisés en projets répartis de façon intrinsèque et projets répartis de façon optionnelle.

Les facteurs à prendre en compte pour la classification d'un projet ou d'un programme en tant que mégascience incluent les points suivants :

- Il s'agit de recherche fondamentale, civile.
- Il exige de disposer de technologies majeures (mais cela est plus approprié au premier type de recherche qu'au second).
- Le coût est généralement considéré comme un facteur capital, sans deute parce qu'il contribue à projeter le début sur la mégascience au premier rang des discussions politiques. Cependant, en considérant les sciences biomoléculaires comme de la mégascience, il faut garder à l'esprit que les sommes mises en jeu semblent souvent triviales par rapport à celles dépensées, par exemple, pour le télescope Hubble. Si l'on veut inclure un programme sur les sciences biomoléculaires, le concept de sous montant absolu ne peut être appliqué.
- La collaboration internationale à grande échelle est une donnée implicite dans un mégaprojet. Cela peut être la nature intrinsèque du projet, ses dimensions et/ou la durée de l'effort, qui nécessitent de disposer de ressources scientifiques à l'échelle du globe.
- L'accès aux équipements, à un programme de recherche, aux technologies impliquées, ou aux résultats peut être d'une importance capitale si ceux-ci ont des caractéristiques uniques. C'est peut-être capital en sciences biomoléculaires.
- L'innovation radicale du projet peut signifier que les efforts consacrés à réussir un « saut technologique » requièrent une action collective de façon à en augmenter les chances.
- Il faut rassembler de très grandes équipes et/ou les meilleures ressources intellectuelles.

Le projet sur le génome humain et les critères de mégascience

Il fut un temps où qualifier le PGH de mégascience soulevait des réactions adverses dans la communauté du génome. Lorsque le projet fut lancé sur le tapis pour la première fois, il fut à l'origine de bon nombre de controverses, la plupart étant mal fondées ou mal informées. Aux États-Unis, cela se cristallisa sur l'importance ou pas de séquencer tout le génome : beaucoup de scientifiques percevaient un grand effort de séquençage comme une menace à la recherche en biologie moléculaire en général, aussi bien à cause des coûts probable que de la petite potentielle de main-d'œuvre dans la recherche. L'idée d'une gestion centrale du projet se heurtait aussi à une tradition forte en biologie moléculaire.

En tendant à décrire le PGH comme le premier « grand projet scientifique » en biologie, la presse lui fit du tort. Le titre – Projet sur le génome humain – fut une source de confusions supplémentaires. Aux États-Unis, ce titre se prêtait à une comparaison avec les entreprises de grande échelle telles que le Projet de Manhattan. Il fallait également sous-entendre que le produit final permettrait la compréhension complète du génome humain (et que cela se ferait relativement rapidement), alors que l'objectif du PGH était en fait la création de ressources, ou la production d'un ensemble d'outils, qui pourraient servir à l'étude des fonctions génétiques humaines. Les efforts pour cartographier (et séquencer) des gènes spécifiques se poursuivaient depuis de nombreuses années ; le PGH tenait d'accélérer le processus et de le rendre plus efficace en faisant systématiquement ce qui autrement serait fait de façon moins coordonnée et prendrait plus de temps et d'argent. Heureusement, depuis un peu plus d'un an, le succès évident du PGH à ce jour, ainsi que son espoir pour le futur, ont supplanté beaucoup de critiques.

Le PGH est un programme de science fondamentale. Les buts à court terme étaient : la construction de cartes génétiques de tous les chromosomes avec l'espoir de rendre la découverte de gènes plus rapide et plus simple ; l'amélioration des cartes physiques, de façon à obtenir des cartes prêtes pour la séquence ; et le développement de technologies améliorées pour le séquençage et la manipulation des données, étapes essentielles en vue des buts à long terme. Ces objectifs ultimes – qui étaient plus ou moins explicites dans les plans des diverses agences de financement – étaient la séquence complète du génome humain (et de quelques gènes modèles) et la localisation de tous les gènes. L'interprétation et l'application de ces connaissances sont généralement considérées comme ne faisant pas partie du PGH en soi. Il est essentiel de se rendre compte que le génome humain ne sera pas entièrement compris lorsque la séquence sera terminée. Le but du PGH n'est pas la compréhension totale mais la création d'outils pour arriver à cette compréhension au siècle prochain.

Coût

Le coût est relativement modeste par rapport aux projets de mégascience en général. Dans le plan quinquennal américain d'origine, le niveau de financement pour le programme (américain) était fixé à 200 millions de dollars par an, ajustés pour tenir compte de l'inflation. Ce niveau de financement n'a pas été atteint : il a atteint les 170 millions de dollars en 1993 et 1994. L'effort américain contribue à plus de la moitié des efforts mondiaux, qui n'ont sans doute pas dépassé 300 millions de dollars en 1994. Comme il
est dit plus haut, les capitaux d'entreprises américaines s'ajoutent à présent au total mais, à de rares exceptions près, les nouvelles compagnies cherchent à appliquer les connaissances acquises sur le génome plutôt que de les enrichir. Si l'on veut atteindre les objectifs de départ, il faudra peut-être plus d'argent, en particulier pour améliorer les technologies de séquençage.

Échelle

Le PGH se développe réellement à l'échelle internationale, même si les travaux sont en grande partie concentrés dans les pays développés à forte tradition de recherche. La cartographie de génome, humain ou non, a toujours été un effort international. De 1972 à 1991, les Ateliers de cartographie de génome humain (CGH) ont offert les principaux moyens pour apporter une contribution à la cartographie de ces génomes ; au niveau international, ils ont fourni autant que les cartes consensus de tous les chromosomes humains. Cette organisation des ressources scientifiques à l'échelle du globe continuera, non seulement par tradition ou uniquement pour assurer une économie d'efforts, mais aussi pour les charges que l'on a de la nature intrinsiche du PGH et de l'importance évidente de sa contribution aux connaissances biologiques. Tout le monde est d'accord pour dire qu'il s'agit là d'une tâche immense ; seul le programme américain est réglé en cadence temporelle précis, en espérant obtenir la séquence complète du génome humain d'ici 2005.

Caractère unique

Le caractère unique du PGH ne réside pas dans un groupe d'équipements. Les technologies sous-jacentes sont importantes et la plupart des programmes nationaux reconnaissent en encourageant leur développement grâce à des programmes de formation. Toutefois, l'accès aux résultats est considéré comme étant d'une importance unique et toutes les agences impliquées se sont engagées à partager les connaissances et à mettre les matériels à disposition des chercheurs sérieux. La plupart des scientifiques partagent les vues des instances délibératives qui, en analysant les débats éthiques soulevés par le PGH, ont conclu que le génome humain est notre héritage commun, et une propriété publique : la connaissance du génome ne peut être la propriété d'un individu ou d'une nation.

Innovation radicale, ressources intellectuelles, etc.

Le séquençage de l'ADN est un domaine qui nécessite une vraie révolution technologique. Même si le but initial d'abaisser le coût à 50 cents des États-Unis par paires de bases sera facilement atteint, comme prévu, d'ici 1996, le but à long terme consiste à créer une technologie qui serait disponible dans de nombreux laboratoires et qui permettrait le séquençage efficace d'autres génomes. On peut dire que le PGH aurait échoué en grande partie si, après le séquençage du génome humain, il était trop cher d'en séquencer d'autres. On pourrait atteindre cet objectif en améliorant foncièrement et en automatisant les technologies actuelles, mais le but du projet reste le développement de technologies radicalement nouvelles.

Outre une augmentation des financements, l'effort de séquençage nécessite plus de personnel, à la fois pour développer les nouvelles technologies et pour accroître le nombre de groupes engagés dans le séquençage de masse.

Équipements

Le PGH n'a pas de besoins intrinsèques en construction d'équipements coûteux. Bon nombre de programmes nationaux et supranationaux ont mis en place des centres de ressources qui mettent à disposition des services pour la cartographie et le séquençage, mais qui ne sont pas très grands. Quelques centres de recherche plus importants ont été créés, surtout lorsque les scientifiques ont collaborer dans une approche « génome entier ». Cependant, les investissements isolés, se concentrant souvent sur le détail d'une partie d'un chromosome, ont aussi leur place. Il ne s'agit pas d'un programme qui doit attendre la réalisation d'équipements spécialisés à gros budget. Depuis le commencement du PGH, les données produites et les technologies développées ont été intégrées en cours de route à la biologie et à la médecine. On a dit du PGH qu'il était analogique à l'assemblage de cartes routières ou marines, qu'on peut utiliser pendant qu'on travaille à les rendre plus précises.

Conclusions

En vertu de son échelle globale et de sa contribution unique à la recherche biologique et médicale, le PGH pourrait être considéré comme appartenant à la catégorie mégascience. Il est peu probable qu'il remplit les conditions sur le terrain du coût, en effet, comparé à certains efforts nationaux sur le cancer ou le SID, ce coût est relativement modeste. Il nécessite une révolution des technologies de séquençage s'il compte atteindre ses objectifs, ce qui à son tour nécessite la participation des meilleures ressources intellectuelles. Il ne nécessite pas d'équipements centralisés et serait classé, s'il il faudrait, en tant que mégaprojet dispersé. En théorie, il pourrait être piloté soit en mode centralisé, soit en mode dispersé, ce qui le classerait en tant que mégaprojet « dispersé de façon optionnelle ». Dans la pratique, aucun pays n'a la main-d'œuvre scientifique ni la compétence nécessaire pour mener le projet à lui seul, ni (plus important) pour persuader les autres qui le devrait le diriger ; le PGH est donc « dispersé de façon intrinsèque ».

8. Mécanismes de coopération

Dès le début, il a été prévu que le PGH serait un effort réellement international. Aussi, pour atteindre les objectifs fixés, il fallut éviter les redondances inutiles et stimuler les collaborations. Par la coordination des divers efforts nationaux seront un défi, les agences de financement ont décidé d'accorder une importance considérable aux réunions, conférences et ateliers internationaux ainsi qu'aux ressources pour les bases de
données. Il n'y a pas eu, cependant, de tentatives sérieuses pour diviser et répartir le travail de façon formelle, par exemple en allouant différents chromosomes à différents programmes, comme cela s'est fait pour le séquençage du génome de levure.

HUGO (Organisation du génome humain)

Origines

La formulation spécifique d'un Projet mondial sur le génome humain au milieu des années 1980 a résulté du développement des technologies de l'ADN qui ont ouvert la porte au séquençage de l'ADN à grande échelle et à une analyse physique de grande portée de l'ADN s'étendant sur plusieurs mégabases et, à terme, sur tout le chromosome. L'importance accordée au départ au séquençage et à la cartographie physique au sein du PHG, ce qui négativait l'intérêt d'appliquer les nouvelles technologies à l'étude des maladies humaines par approche génétique, reflétait l'implication des secteurs miniers de la communauté des biologistes moléculaires engagés dans la formulation du PHG. Ces scientifiques provenaient d'un milieu différent de celui des cartographes des gènes humains qui dirigeaient les fameux ateliers de CGH – la seule activité réellement internationale dans ce domaine jusqu'alors.

Il devait clair que, si le projet voulait atteindre ses objectifs, il fallait que ces deux communautés scientifiques quelque peu différentes travaillent ensemble. Il était clair aussi que le projet se plaçait à une échelle radicalement différente de celle de toute collaboration internationale antérieure dans la recherche biomédicale.

Ce fut dans ce contexte qu'un groupe de scientifiques joua un rôle de pivot et engagea dans les premières discussions sur le PHG décida qu'il serait opportun de former une organisation internationale de scientifiques activement impliqués. L'objectif de l'organisation serait de s'assurer que le projet soit mené en tant qu'activité internationale et que les avis collectifs de la communauté scientifique sur sa réalisation soient rapportés aux diverses agences nationales et internationales de financement. Ainsi, HUGO fut créé en 1988 et établi officiellement en 1989. Au départ, l'adhésion à HUGO était basée sur un modèle quelque peu élitiste, « académique » ; HUGO prétendait apporter sa contribution aux discussions politiques et contribuer à l'organisation de la science. Avec le temps, HUGO a évolué vers une entité semblant bien plus à une société scientifique internationale, tout en ayant moins de 700 membres au début de 1995. Cette faible adhésion limite sa crédibilité en tant que représentant universel des scientifiques du génome : le Centre de ressources du Royaume-Uni à lui seul compte 2 000 inscrits.

Les objectifs de HUGO sont :

- d'assister dans la coordination de la recherche sur le génome humain et en particulier de stimuler les collaborations entre scientifiques en vue d'éviter les concurrences inutiles et les travaux en double ;

- de coordonner et faciliter l'échange de données et de bio-matériels utiles à la recherche sur le génome humain.

Organisation

HUGO possède trois bureaux : HUGO (Américaines) à Bethesda, Maryland, financé par une subvention des Instituts médicaux Howard Hughes; HUGO (Europe) à Londres, financé auparavant par le Wellcome Trust et le Fonds impérial pour la recherche sur le cancer auxquels s'ajoutent actuellement plusieurs organismes de financement européens ; et HUGO (Pacifique) au Japon, financé par une donation privée. Il y a aussi un petit bureau affilié à Moscou. Les financements sont essentiellement de courte durée et modestes ; ils ne fournissent qu’un soutien en personnel (environ six en tout) et une aide aux activités financières. L'aide financière pour les activités du programme lui-même doit être trouvée ailleurs. HUGO est constitué en société à Genève, mais les bureaux américains et européens sont aussi constitués localement.

HUGO possède un Conseil élu qui décide de la politique et impose des mesures d'orientation commune. Le Conseil a créé plusieurs comités consultatifs, mais le plupart n'ont pas été très actifs. Il est donc que le Conseil ne réunit pas fréquemment, que chaque bureau, en pratique, est responsable de son Conseil d'administration local et jouit d’un certain degré d’autonomie. Actuellement, la coordination des ateliers sur le chromosome est la seule activité pour laquelle tous sont sérieusement engagés.

Activités

Ateliers sur le chromosome (ASC) : coordination

Il est généralement reconnu, par les agences de financement entre autres, que HUGO a joué un rôle très utile dans la gestion des ASC. Ces ateliers, qui ont été l'un des activités clés du PHG, ont tenu pendant plusieurs années, ont encouragé le partage des informations et des matériaux, facilité les collaborations, et aidé à l'achèvement des cartes de chromosomes. Tôts, HUGO a passé à une phase de transition, en partie en tant qu’ils succèdent aux anciens ateliers de CGH) et a aussi vu le besoin de fournir une assistance aux organisations des ateliers, non seulement pour négocier le logement universitaire des agences de financement mais aussi pour définir les caractéristiques entraînant la réussite ou l'échec d'un ASC. Tout cela a été incorporé dans une série de lignes directrices, qui ont été mises à jour en fonction des nouveaux besoins.

Grâce en grande partie à l'aide de la Commission européenne, HUGO a réussi à superviser et faire fonctionner les ASC de façon continue, à fournir des comptes rendus annuels aux agences de financement et à la lumière des observations des scientifiques du génome et d'autres, à mettre à jour les lignes directrices quand il le fallait.

HUGO (Europe) a aussi fourni un mécanisme pour soutenir les ASC au moyen de financements de l'UE (Cela représente généralement 10 000 ECU pour chaque ASC tenu en Europe et pour les frais de voyage des scientifiques européens se rendant à des ASC ailleurs.) Des fonds fournis par le gouvernement australien ont été utilisés pour épauler la participation australienne aux ASC, et le bureau du Japon a utilisé ses propres fonds pour appuyer la participation des Japonais.
Bourses de voyages

Colle-ci sont disponibles aux jeunes scientifiques qui souhaitent entreprendre une courte visite dans un laboratoire situé dans un autre pays et engagé dans la recherche sur le génome humain. Elles sont destinées à faciliter la recherche par collaborations ou le transfert des technologies. Pour la première année, 20 000 dollars ont été fournis par les fonds centraux de HUGO (Amérique) et une somme équivalente a été décernée par la Commission européenne, par l’intermédiaire de HUGO (Europe).

Éthique

La plupart des agences publiques qui subvient aux besoins de la recherche sur le génome ont pris des mesures pour anticiper et aborder les questions de politique sociale qui pourraient être engendrées par les nouvelles connaissances. De plus, plusieurs instances délibérantes à travers le monde ont soulevé les mêmes questions. Malgré un certain degré de recoupement, ces divers groupes ne semblaient pas avoir des moyens de communication efficaces, ce qui a conduit à une forte répétition des efforts. Le Comité d'éthique de HUGO a conclu qu'il pouvait au mieux jouer un rôle de coordination et d'organisation ; en novembre 1992, il a réuni des représentants d'environ douze comités nationaux et supranationaux. Les participants ont généralement conclu que cela avait été un exercice utile : malheureusement, HUGO n'a jamais renouvelé cette initiative. Toutefois, deux membres du Comité d'éthique projettent actuellement de produire tous les ans « l'Annuaire international de HUGO : génétique, éthique, droit et société », avec l'aide financière du DOE. Outre des articles originaux, l'annuaire contiendra des déclarations de position des différentes instances, des comptes rendus nationaux sur les développements juridiques et les règlements, et une large bibliographie.

Génome de la souris

Le Comité de la Souris de HUGO a publié une base de données des ressources sur le génome de la souris qui sera régulièrement mise à jour et, à terme, accessible par télécommunications.

Projet sur la diversité du génome humain

Le processus de planification pour ce projet a été clairement accéléré grâce à l'effort fourni par HUGO (Europe) au cours des deux dernières années.

Réunion au sommet, 20-21 janvier 1994

Le Président de HUGO a invité des représentants de 14 agences ayant un intérêt dans la recherche sur le génome à participer à un sommet à Houston en janvier 1994. Au début, il fut proposé de passer en revue les programmes nationaux de recherche – de façon à déterminer la contribution que chacun pourrait apporter et les profils qu'il pourrait retirer d'un programme global coordonné – ainsi que les défis actuels de la collaboration inter-
nationale sur le génome tels que les bases de données, le partage des matériaux et les droits de PI. Finalement, la possibilité d'un programme global coordonné n'a pas été soulevée. On a considéré que la possibilité de discuter des questions de PI avait plus d'importance.

Réunions

Une partie de la communauté de la cartographie génétique (et une partie seulement) a l'impression que la cessation des ateliers de CGH à l'ancienne a laissé un vide, rempli en partie seulement par les ASC et la BDG par télécommunications. Pour aborder cette préoccupation, HUGO a organisé deux Réunions de coordination sur les chromosomes (CCM92, CCM93) avec la participation des scientifiques responsables de la validation des données (les « éditeurs ») dans la BDG ; il a aussi organisé CGH93, une réunion suivant les traces des anciennes CGH mais sans rassemblement de données. Les CCM se sont attaquées à quelques problèmes de bases de données mais n'ont pas réussi à en traiter d'autres. De nombreux participants ont parlé de problèmes de données mais n'ont pas été invités : les agences de financement mettent en doute le rendement par rapport au coût. HUGO prévoit une CGH en 1996.

HUGO a organisé de nombreux ateliers ad hoc, principalement à propos de questions scientifiques et pour la Commission européenne une réunion sur les questions de PI dans la recherche sur le génome.

CEPH (Centre d’étude du polymorphism humain, Paris)

Le CEPH continue d'être une ressource internationale, unificateur pour les efforts de création et d'amélioration de cartes génétiques de liaison de chromosomes. Les agences de financement se sont mises d'accord pour dire que de tels efforts utiliseront l'ADN des collections de lignées cellulaires et de génotypes de grande fragilité au sein du CEPH. Cela a rendu plus aisée la production de cartes de référence, ou de structure, pour chaque chromosome.

La communauté scientifique

L'échange d'informations entre les scientifiques a lieu lors de réunions, conférences et ateliers internationaux. Ceux-ci ne manquent pas, tout comme il ne semble pas y avoir de restrictions apparentes sur les financements pour les voyages. Les ateliers sur le chromosome ont joué un rôle particulièrement important.

Le projet C. elegans américain-britannique pour le séquençage du ver rond (Caenorhabditis elegans) est souvent cité comme modèle de collaboration internationale. Les scientifiques ont étudié intensément le ver rond, surtout au Royaume-Uni et aux États-Unis, en vue de comprendre les règles qui gouvernent le développement du système nerveux. Plus récemment, une carte physique du génome du ver rond a été effectuée avec plus de 95 pour cent de son ADN en comènes contiguës ou en chaîne YAC. Dès le départ, c'était un projet de la communauté. De nombreux chercheurs ont contribué aux gènes et autres signes de repère qui ont ponctué la carte. Le projet entier n'aurait pas été possible
s'il n'y avait pas ou la volonté des chercheurs sur C. elegans de partager leurs résultats bien avant les publications. La banque de données de cartographie, qui contient tous ces résultats, encourage le partage. Le ver est devenu le banc d'essai pour les tentatives d'accélérer et de rendre plus économique le séquençage d'ADN à grande échelle. Le séquençage est financé par le NIH ainsi que le MRC de Royaume-Uni et se poursuit à St. Louis et au Centre Sanger, près de Cambridge.

D'autres collaborations individuelles comprennent :
- la collaboration CEPH/NIH pour produire une carte de liaison génétique complète de 1 416 loci sur tout le génome ;
- une autre collaboration francophone-américaine, entre le Génethon et Whitehead/MIT, sur la cartographie physique (grâce aux még-YAC du Génethon) ;
- une collaboration DOE/Australie pour développer une carte physique du chromosome 16 ;
- un projet DOE/Japon pour produire une carte physique de haute résolution du chromosome 21.

Gouvernements et agences de financement

La plupart des agences de financement ont été attentives au besoin d'«inférer» leurs partenaires sur la priorité, le financement, etc. et ont invité des représentants des programmes sur le génome d'autres pays aux réunions sur ces questions. La plupart impliquant aussi des scientifiques du génome d'autres pays qui participent à l'évaluation générale des résultats obtenus et à l'établissement des plans pour l'avenir. La communauté internationale du génome a participé, par exemple, aux réunions tenues par les agences américaines pour revoir et redéfinir leurs besoins d'investissements. Cela offre l'avantage d'un consensus de la communauté scientifique dans un ensemble sur les besoins du PGH, mais non nécessairement sur leur importance relative ou sur les moyens exacts d'y arriver. Il existe des arrangements formels pour la coopération bilatérale — par exemple le groupe de travail américano-européen pour la biotechnologie. Ces attributions vont bien au-delà des projets sur le génome, mais plusieurs sont de même ce qui concerne la levure et Arabidopsis, ont été discutés.

Ateliers sur le chromosome

Les ASC fourissent le seul exemple d'un accord international (quoique non officiel) soutenant une activité particulière. Très tôt, les agences des États-Unis et du Royaume-Uni ont mis en place une politique commune qui demandait à chaque agence de subvenir aux frais de voyage de ceux des ressortissants nationaux qui apporteraient une contribution substantielle à un ASC, où qu'il soit tenu. Le pays hôte subventionne les arrangements locaux. La plupart des agences de financement ayant des programmes nationaux sur le génome adhèrent aujourd'hui à ce système et cela a sans doute contribué au succès des ASC.

Les NIH et DOE américains ont annoncé que leur soutien pour le programme ASC « en tant qu'entité coordonnée » s'arrêtera à la fin de 1996. Il est probable que d'autres agences de financement suivront.

Bases de données

Le PGH dépend de façon critique de l'efficacité de l'organisation, du stockage et de la propagation des données. La coordination passe aussi par un partage des informations.

A présent, il existe de nombreuses bases de données séparées, chacune étant une entité physique distincte à gestion indépendante, et la plupart possèdent leurs propres systèmes d'accumulation, de stockage et de présentation. Le projet de Base de données génomique intégrée (BDGI) de la Commission européenne essaie d'aborder la proposition de créer un «banque de données virtuelle» unique et unique qui serait accessible à l'utilisateur en bout de chaîne. Cela ne résoudrait pas tous les problèmes. Des questions non techniques, comme la nomenclature, nécessitent une attention urgente.

Le Dr. James Watson, premier directeur du CHORI du NIH, a invité de nombreux autres pays à participer aux coûts de la BDGI et, en retour, à participer à sa gestion. Un comité d'administration international (IACC) a été créé, composé des représentants des diverses agences de financement prêtes à contribuer à la BDGI — du Japon, de la France, du Royaume-Uni, des Pays-Bas et de la Commission européenne. Au même moment, la BDGI a créé son propre Comité consultatif scientifique international (ISAC). Les deux se sont rencontrés plusieurs fois en 1992.

En 1993, le DOE a pris le relais du NIH en tant qu'agence principale pour la BDGI. Les suggestions d'un «renouvellement compétitif» pour les subventions de la BDGI — qui permettrait à des scientifiques en dehors des États-Unis de poser leur candidature pour mener à bien certains aspects du travail, et de dépenser une partie des contributions étrangères dans leur pays d'origine — furent retirées. Néanmoins, les contributions de certaines agences non américaines ont été dépouillées hors des États-Unis.

Il semble dommage qu'un tel exercice de collaboration active entre agences de financement nationales n'ait pas continué. Un nouveau modèle de participation internationale a toutefois vu le jour. L'«editing» de la nomenclature se fait en partie au Canada (avec le soutien des États-Unis) et en partie au Royaume-Uni (avec le soutien de la Commission européenne et du Royaume-Uni). Il y a eu jusqu'à ce jour, neuf antennes de la BDGI dans le monde, dont la plupart reçoivent un financement local. Par exemple, une antenne française est subventionnée par l'INSERM et la Commission européenne et celle de Heidelberg l'est par la Commission européenne. En 1993, la BDGI a commencé à tenir des réunions annuelles de ses branches ; la première a eu lieu à Londres, la deuxième aux Pays-Bas. Elles démontrent que les relations sont excellentes entre le centre et les antennes. Pendant cette période aussi, un nouveau système de surveillance de la BDGI a été décidé et il donne un rôle plus important à l'ISAC.

Trois des bases de données sur la séquence de l'ADN ont des moyens de coordination satisfaisants ; la quatrième y sera probablement intégrée.

La coordination entre les bases de données pour le génome humain et pour ceux des autres organismes est minime, mais les collaborations internationales entre scientifiques impliqués dans le développement de bases de données semblent en pleine expansion.
Organismes internationaux

En ce qui concerne les questions informatiques, il n’y a pratiquement pas eu d’engagement de la part de CODATA, un comité du CIUS, qui a pour mission d’améliorer la qualité, la fiabilité et l’accessibilité des données ainsi que de faciliter les collaborations internationales. Il a été suggéré que cela est dû en partie à l’insécurité de CODATA mais en partie aussi à sa manque de crédibilité auprès des scientifiques du génome. (La plupart des personnes consultées pendant la préparation de ce rapport ont fait profession d’une totale ignorance vis-à-vis du CIUS.) CODATA a mis en place une équipe de travail sur la nomenclature qui (dit-on) n’a clairement pas réussi à venir aux prises avec les séquences d’ADN et les données en rapport. COGENE, un autre comité du CIUS, a organisé deux symposiums sur la recherche sur le génome humain en association avec l’UNESCO.

L’UNESCO a essayé de jouer un rôle de coordination mais HUGO l’a persuadé de se retirer, en arguant que ce rôle serait mieux pris en charge par une organisation (HUGO) dont le seul et unique intérêt était le génome humain et où les compétences étaient concentrées. L’UNESCO a mis en place un programme très utile de bourses pour les scientifiques du génome provenant de pays en voie de développement et semble, par cette activité, assurer que les programmes nationaux sur le génome sont au fait des développements. L’UNESCO a aussi apporté son soutien à de nombreuses conférences, comme la Première conférence sud-ouest sur le génome humain en 1992 au Brésil. L’UNESCO a contribué de façon importante à donner aux pays en voie de développement accès aux informations et aux connaissances issues du PCH.

Les questions juridiques, éthiques et sociales ont attiré l’attention d’organismes internationaux et supranationaux. L’un des premiers participants dans ce domaine fut le CIOMS (Conseil pour les organisations internationales de sciences médicales), organisation «fondée sous les auspices de l’OMS et de l’UNESCO» qui a tenu sa 24e Conférence annuelle en 1990 au Japon sur le thème «Valeurs éthiques, éthiques et humaines». La déclaration d’Inuyama qui en a résulté a dit presque tout ce qu’il y avait à dire quant à la définition des questions à poser. En Europe, le Groupe Milazzo et le Conseil de l’Europe, ainsi que deux comités de la Commission européenne, se sont penchés sur la question. L’Association internationale de biologie a fait de même. Peu d’entre eux ont produit des rapports détaillés (le groupe de travail AES de la Commission européenne est une exception honorable). L’UNESCO et l’OMS sont des acteurs récents sur la scène biéthique. Tous deux ont des contributions uniques à faire s’ils en décident ainsi : le premier peut garantir que les avis des pays du Tiers Monde soient représentés ; le second pourrait faire appel à son expérience dans l’organisation de programmes de dépistages largement acceptés. D’autres contributions à la définition des questions à poser ne seraient pas utiles. Un article dans Science (1er octobre 1993) a attiré l’attention sur les critiques grossières du programme américain sur les «AIÉs» en particulier sur les nombreuses réunions où souvent les mêmes acteurs débattent des mêmes questions. Cela est à fortiori une caractéristique de la scène internationale.

9. Bien-fondé de la coordination

Il existe sans aucun doute des duplications inutiles, ou des redondances dans les efforts. Par exemple, les États-Unis ont choisi de dupliquer une contribution française définitive à la carte génétique : d’autres exemples moins flagrants abondent. Les scientifiques ont tendance à dire, et on le comprend : « ça n’est pas mon problème » ; les agences de financement sont peu disposées à empêcher le financement d’une bonne proposition lorsqu’elles peuvent suspecter, mais sans en être certaines, qu’elle recoupe le travail d’un autre. Réduire les recouvrements devrait permettre de libérer des fonds pour s’attaquer à des domaines qui sont à l’heure actuelle en manque de financement ; la plupart des gens s’accorderaient pour dire que le séquençage de l’ADN, à la fois pour produire plus de séquences et pour développer de nouvelles technologies, nécessite plus d’investissements ; cela joue en faveur de collaborations plus proches (bien que la collaboration pour le développement de nouvelles technologies de séquençage puisse être inhibée à cause de son énorme potentiel commercial). Lorsqu’il verra le jour, le séquençage de masse à grande échelle du génome sera un candidat évident pour une telle coordination.

La duplication considérable des efforts en ce qui concerne les délibérations sur les questions juridiques, éthiques et sociales devrait être abordée ; surtout là où le soutien de cette activité draine des ressources financières peu abondantes. En même temps, il faut que ces discussions évoluent vers le choix des politiques à mener et vers les suggestions pour leur réalisation. HUGO a un rôle potentiel à jouer sur ce terrain, dans la distribution des informations à tous ceux qui sont impliqués, mais c’est aux organisations gouvernementales de décider ce qui est nécessaire.

HUGO a certes joué un rôle dans la coordination, mais bien moins que ce qui a été prévu au départ. Son intention initiale était de mobiliser les aptitudes de ses membres pour aider à mener la coordination mais, en évoluant vers le modèle de société scientifique, il commence plutôt à se demander ce qu’il devrait faire pour eux. Un certain gaspillage d’efforts en a résulté.

Les domaines où la coordination est nécessaire sont les bases de données et les questions de propriété intellectuelle.

Pour les bases de données, la situation est loin d’être satisfaisante, en partie à cause de l’énorme quantité de données à manipuler mais aussi à cause de la variété déconcertante de tâches à mener. Les bases de données publiques concernées sont souvent critiquées pour leur manque de convivialité. Les liens entre les bases de données existantes sont difficiles pour l’utilisateur à cause d’une absence de nomenclature standardisée. Le besoin d’une base de données et de documents de référence pour la cartographie physique est urgent. Les responsabilités des différentes parties du système général d’informations peuvent se situer à différents endroits : en effet, c’est généralement une erreur de laisser un groupe essayant de tout faire, à moins qu’il ne soit en position de recruter une grande équipe avec des compétences diverses. Il faut qu’il y ait un mécanisme pour les communautés d’utilisateurs — et elles sont multiples — pour définir leurs besoins et communiquer leurs objectifs scientifiques.
Ce sont les questions de propriété intellectuelle qui lancer le plus grand défi aux collaborations scientifiques internationales et au libre échange des données et des matériels. Un accord international sur le partage des données serait bénéfique. Mais de plus vastes questions se posent dans le contexte du PGH. La première est l'harmonisation des lois sur les brevets, mais l'UE semble avoir abandonné son effort pour adopter la protection légale offerte aux inventions biotechnologiques en Europe à celle, plus généreuse, offerte par les États-Unis et le Japon. Deuxièmement, il faudrait que tous les pays fussent une interprétation généreuse et approfondie des clauses existant déjà dans les conventions internationales et dans la plupart des législations nationales sur la propriété intellectuelle, clauses qui permettent l'utilisation à des fins de recherche d'inventions brevetées. En vue de garantir l'exécution sans accroc de ces dérogations au droit de brevet pour la recherche, il a été avancé qu'un arrangement mondial, ou au moins au niveau de l'OCDE, contribuerait énormément à la libre circulation des informations scientifiques. Finalement, en temps voulu, on prévoit le besoin d'un accord international sur les conditions requises pour les brevets concernant les inventions émanant du PGH; cela pourrait se faire au sein de l'OCDE.

Le Projet sur le génome humain est un projet mondial sans pour autant être un projet coordonné. En ce qui concerne la science, les collaborations internationales semblent prospérer et il n'y a pas, à première vue, de besoin de coordination, sauf en ce qui concerne les bases de données. Du côté politique, cependant, les problèmes de propriété intellectuelle n'ont pas été résolus, mais simplement amincis, et ils pourraient menacer le libre échange des données et des matériels. Dans ce domaine, la coordination serait certainement appréciée.

Notes

2. The Human Genome Mapping Project in the UK : Priorities and Opportunities in Genome Research (1994), HMG, Londres, avril.
4. PECO concerne la coopération en science et technologie avec les pays de l'Europe centrale et orientale et avec les nouveaux États indépendants de l'ancienne Union soviétique.
Glossaire

Acide aminé : Une molécule parmi le groupe des 20 molécules qui s’assemblent pour former les protéines du vivant. La séquence des acides aminés dans la protéine et, de là, la fonction de la protéine sont déterminées par le code génétique.

Acide nucléique : Grande molécule composée de sous-unités appelées nucléotides.

Adénine (A) : Base nitrogénée, l’un des membres de la paire de bases AT (adénine-thymine).

ADN (acide désoxyribonucléique) : Molécule qui code pour l’information génétique. L’ADN est une molécule dont la structure est composée de deux brins maintenus l’un contre l’autre grâce à des liaisons faibles entre les paires de bases des nucléotides. Les quatre nucléotides de l’ADN comprennent les bases : adénine (A), guanine (G), cytosine (C) et thymine (T). Dans la nature, les paires de bases ne se forment qu’entre A et T et entre G et C ; ainsi, la séquence des bases de chaque brin peut être déduite à partir de celle de son partenaire.

ADN complémentaire (ADNc) : ADN synthétisé en prnant pour modèle un ARN messenger ; la forme simple-brin est souvent utilisée en tant que onde dans la cartographie physique.

AJES : Aspects juridiques, éthiques et sociaux du PGH.

Altères : Formes alternatives d’un locus génétique ; un allèle unique pour chaque locus est transmis séparément par chaque parent (c’est-à-dire, dans un locus pour la couleur des yeux, l’allèle pourrait donner des yeux bleus ou marron).

Anomalies polygyniques : Anomalies génétiques résultant de l’action combinée de plus d’un gène.

Anomalie touchant un gène unique : Anomalie héréditaire causée par un allèle mutant d’un seul gène (comme la dystrophie musculaire de Duchenne, le rétinoblastome, l’anémie falciforme).

ARN (acide ribonucléique) : Substance chimique trouvée dans le noyau et le cytoplasme des cellules ; Molécule jouant un rôle important dans la synthèse des protéines et dans les autres activités chimiques de la cellule. La structure de l’ARN est similaire à celle de l’ADN. Il y a plusieurs classes de molécules d’ARN, dont les ARN messagers, les ARN de transfert, les ARN ribosomiques et d’autres petits ARN, chacun servant une fonction différente.

ARN messenger (ARNm) : ARN servant de patron à la synthèse de protéines. Voir code génétique.

Autosome : Chromosome non impliqué dans la détermination du sexe. Le génome humain diploïde est constitué de 46 chromosomes : 22 paires d’autosomes et une paire de chromosomes sexuels (les chromosomes X et Y).

Banque de clones : Voir bibliothèque génomique.

Bibliothèque : Groupe aléatoire de clones (c’est-à-dire l’ADN cloné à partir d’un organisme particulier) pour lesquels on peut établir des correspondances mutuelles par cartographie physique. Comparez à bibliothèque génomique.

Bibliothèque de gènes ou bibliothèque génomique : Groupe de clones formé à partir d’une série de fragments d’ADN chevauchants générés aléatoirement et représentant le génome entier d’un organisme.

Biotechnologie : Ensemble de techniques biologiques développées par la recherche fondamentale et appliquées à présenter à la recherche et au développement de produits. En particulier, l’utilisation industrielle de l’ADN recombinant, des cultures cellulaires et de nouvelles techniques de biotraitements.

Carte de confiabilité : Carte décrivant l’ordre relatif d’une bibliothèque reliée composée de petits clones chevauchants représentant un segment chromatique complet.

Carte de liaison : Carte des positions relatives de loci génétiques sur un chromosome, déterminées en fonction de la fréquence avec laquelle ces loci sont transmis ensemble au cours d’une génération. Les distances sont mesurées en centimorgan (cM).

Carte génétique : Voir carte de liaison.

Carte physique : Carte des positions des points de reprise identifiables sur l’ADN (par exemple des sites de coupe par enzyme de restriction, des gènes), indépendante de l’héritabilité. Les distances sont mesurées en paires de bases. Pour le génome humain, la carte physique ayant la résolution la plus faible est représentée par les motifs des bandes rythman les 24 chromosomes différents ; la carte ayant la plus haute résolution serait la séquence complète des nucléotides des chromosomes.

Cartographie : Voir cartographie de gènes, carte de liaison, carte physique.

Cartographie de gènes : Détermination des positions relatives de gènes sur une molécule d’ADN (chromosome ou plasmide) et de la distance entre eux, en unités de liaison ou unités physiques.

Cellules somatiques : Toutes les cellules de l’organisme sauf les gamètes et leurs précurseurs.

Centimorgan (cM) : Unité de mesure de la fréquence de recombinaison. Un centimorgan correspond à un pour cent de probabilité qu’un marqueur situé à un locus génétique donné soit séparé d’un marqueur à un autre locus loin d’un crossing over au cours d’une seule génération. Pour les êtres humains, un centimorgan équivaut, en moyenne, à un million de paires de bases.
Chromosomes : Structures génétiques auto-répliquantes des cellules contenant l'ADN cellulaire qui porte dans sa séquence de nucléotides l'arrangement linéaire des gènes. Chez les procarées, l'ADN chromosomique est circulaire, et le génome entier est porté par un chromosome. Les génomes eucaryotes sont constitués de nombreux chromosomes dont l'ADN est associé à différentes sortes de protéines.

Chromosome artificiel de levure (YAC) : Vecteur utilisé pour cloner des fragments d'ADN étranger (jusqu'à 1 million de pb) ; il est constitué des séquences rhénotiques, centromériques et d'origine de réplication nécessaires à la réplication dans les cellules de levure.

Chromosomes homologues : Paire de chromosomes contenant les mêmes séquences linéaires de gène, chacun provenant d'un parent.

Chromosomes sexuels : Ce sont les chromosomes X et Y chez les humains qui déterminent le sexe d'un individu. Les femmes ont deux chromosomes X dans les cellules diploïdes, les hommes ont un chromosome X et un Y. Les chromosomes sexuels sexuels composent la 2ème paire de chromosomes dans un karyotype. Comparez à autosomès.

Clonage : Technique pour produire de façon anarchie un groupe de cellules (clones), toutes génétiquement identiques, à partir d'un ancêtre unique. Dans les techniques d'ADN recombinantes, on appelle clonage d'ADN l'utilisation des méthodes de manipulation de l'ADN pour produire des copies multiples d'un même gène ou d'un segment d'ADN.

Clone : Groupe de cellules dérivant d'un ancêtre commun.

cM : Voir centimorgan.

Code génétique : Séquence de nucléotides, codée en triplets (codons) le long d'une molécule d'ARNm, qui détermine la séquence des acides aminés dans la synthèse d'une protéine. La séquence d'ADN d'un gène peut servir à prédir la séquence d'ARNm, et le code génétique peut à son tour servir à prédir la séquence d'acides aminés.

Codon : Voir code génétique.

Complémentaire : Voir séquences complémentaires.

Conservé : Voir séquences conservées.

Contig : Groupe de clones représentant des régions chevauchantes d'un génome. Voir carte de contig.

Cosmid : Vecteur de clonage construit artificiellement qui contient le gène csa du phage lambda. Les cosmides peuvent être emploqués dans des particules de phage lambda pour infecter E. coli ; cela permet le clonage de fragments d'ADN plus grands (jusqu'à 45 kb) pouvant être introduits dans des hôtes bactériens sous forme de vecteurs plasmidiques.

Crossing over : Casseur au moment de la méiose d'un chromosome père et d'un chromosome mère, échange de sections réciproques d'ADN, et redéploiement des chromosomes. Ce processus peut conduire à un échange d'allèles entre chromosomes. Comparez à recombinaison.

Cytosine (C) : Base nitrégénée, l'un des membres de la paire de bases G-C (guanine-cytosine).

Dénydroxyribonucléotide : Voir nucléotide.

Diploïde : Ensemble complet de matériel génétique, composé de chromosomes en paires. - chaque chromosome provenant d'un ensemble parenté. La plupart des cellules animales, sauf les gamètes, possèdent une série diploïde de chromosomes. Le génome diploïde humain est composé de 46 chromosomes. Comparez à haploïde.

Double hélice : Forme adoptée par deux brins linéaires d'ADN lorsqu'ils sont liés ensemble.

Escherichia coli (E. coli) : Bactérie commune qui a été intensément étudiée par les généticiens à cause de sa petite taille de son génome, d'une absence normale de pathogénicité et de sa facilité de croissance en laboratoire.

Exon : Séquences d'ADN codant pour une protéine au sein d'un gène. Comparez à introns.

Expression d'un gène : Processus par lequel l'information codée par un gène est convertie en structures fonctionnelles présentes dans la cellule. Les gènes exprimés regroupent ceux qui sont transcrits en ARNm puis traduits en protéine et ceux qui sont transcrits en ADN mais qui ne sont pas traduits en protéine (c'est-à-dire les ARN de transfert ou ribosomaires).

Gamète : Cellule différenciée reproductive mâle ou femelle (spermatozoïde ou ovule) avec une séro haploïde de chromosomes (23 chez l'homme).

Gène : Unité fondamentale physique et fonctionnelle de l'hérédité. Un gène est une séquence ordonnée de nucléotides située dans une position particulière du chromosome qui code pour un produit fonctionnel spécifique (c'est-à-dire une protéine ou une molécule d'ARN). Voir expression d'un gène.

Gène exprimé : Voir expression d'un gène.

Génétique : Étude des mécanismes de l'hérédité de caractéristiques spécifiques.

Génome : Ensemble du matériel génétique dans les chromosomes d'un organisme particulier ; sa taille est généralement exprimée en fonction de son nombre total de paires de bases.

Guanine (G) : Base nitrégénée, l'un des membres de la paire de bases G-C (guanine-cytosine).

Hétéozygote : Présence de différents allèles à un ou plusieurs loci entre chromosomes homologues.

Homologies : Similarités dans les séquences d'ADN ou de protéines entre individus de la même espèce ou entre espèces différentes.
Hybridation in situ de fluorescence (FISH en anglais) : Approche de cartographie physique utilisant des marqueurs fluorescents pour détecter une hybridation ou une sonde avec les chromosomes en métaphase et avec la chromatine moins condensée en interfase somatique.

Introns : Séquences de bases d’ADN interrompant les séquences codantes pour une protéine au sein d’un gène ; ces séquences sont transmises en ARN mais sont coupées et éliminées du message avant la traduction du gène en protéine. Comparer à exons.

In vitro : Hors d’un organisme vivant.

kb : Voir kilobase.

Kilobase (kb) : Unité de longueur d’un fragment d’ADN équivalent à 1 000 nucléotides.

Liaison : Proximité de deux marqueurs ou plus (c’est-à-dire des gènes, des microsatellites) sur un chromosome ; plus les marqueurs sont proches, moins il est probable qu’ils soient séparés par la répartition de l’ADN ou le processus de réplication, et ainsi, plus la probabilité qu’ils soient hérités ensemble est forte.

Marqueur : Endroit physique identifiable sur un chromosome dont on peut suivre la transmission familiale. Les marqueurs peuvent être des régions exprimées de l’ADN (gènes) ou des segments d’ADN sans fonction codante connue mais dont le mode de transmutation héréditaire peut être déterminé.

Mb : Voir mégabase.

Maladie multifactorielle : Maladie causée par des variations dans un ou plusieurs gènes, mais faisant également intervenir les facteurs environnementaux.

Matériel génétique : Voir gène.

Mégabase (Mb) : Unité de longueur équivalant à un fragment d’ADN d’un million de nucléotides et sensiblement égale à un cm.

MES : Marqueurs exprimés de séquence. Séquence d’ADN définissant le produit d’un gène. Les MES sont des SMS dérivés à partir d’ADNC.

Microsatellite : Morceau de div- tri- ou tétraméthyléthylé étendus, flanked de séquences uniques. Les microsatellites sont des marqueurs très utiles pour la cartographie génétique.

Molécules d’ADN recombinant : Combiné de molécules d’ADN d’origines différentes jointes grâce à des technologies d’ADN recombinant.

Mutation : Tout changement héréditaire dans une séquence d’ADN. Comparer à polymorphisme.

Nucléotide : Sous-unité de l’ADN ou de l’ARN composée d’une base nitrogenée (adénine, guanine, thymine ou cytosine dans l’ADN ; adényne, guanine, uracile ou cytosine dans l’ARN), d’une molécule de phosphates et d’une molécule de sucre (désoxyribose dans l’ADN et ribose dans l’ARN). Des milliers de nucléotides s’assemblent pour former les molécules d’ADN ou d’ARN. Voir ADN, paire de bases, ARN.

P1 : Virus de bactérie utilisé en tant que vecteur de clonage pour des morceaux d’ADN allant jusqu’à 100 kb.

Ph : Voir paire de bases.

Paire de bases (Ph) : Deux bases nitrogenées (adénine et thymine ou guanine et cytosine) maintenues ensemble par des liaisons faibles. Les deux brins de l’ADN s’assemblent en forme de double hélice grâce aux liaisons entre les paires de bases.

PCR : Voir réaction de polymérase en chaîne.

PGH : Projet sur le génome humain : souvent employé comme nom générique pour le Projet sur le génome humain global.

Phase : Un virus dont l’hôte naturel est la cellule de bactérie.

Plasmide : Molécules d’ADN circulaires trouvées chez les bactéries pouvant contenir jusqu’à 12 000 pb d’ADN étranger.

Polymorphisme : Différence dans la séquence d’ADN entre individus. Des variations génétiques trouvées dans plus de 1 pour cent de la population peuvent être considérées comme polymorphisme utile aux analyses de liaison génétique. Comparer à mutation.

Produit d’un gène : Matériau biochimique, soit ARN soit protéine, résultant de l’expression d’un gène. La quantité de produit d’un gène est utilisée pour estimer l’activité de ce gène ; des quantités anormales peuvent être corrélées à des accidents responsables de maladies.

Projets sur le génotype : Efforts de recherche et de développement de technologies visant à cartographier et séquencer une partie ou la totalité du génome des humains et d’autres organismes.

Protéine : Grande molécule composée d’au moins une chaîne d’acides aminés dans un ordre spécifique ; cet ordre est déterminé par la séquence des bases de nucléotides dans le gène codant pour la protéine. Les protéines sont nécessaires à la structure, à la fonction et à la régulation des cellules, des tissus et des organes du corps, et chaque protéine a des fonctions uniques. Les hormones, les enzymes et les anticorps en sont des exemples.

Réaction de polymérase en chaîne (PCR) : Méthode pour amplifier une séquence de bases d’ADN utilisant une polymérase résistante à la chaîne et deux amorces de 20 bases, l’une complémentaire au brin (+) à une extrémité de la séquence à amplifier et l’autre complémentaire au brin (−) à l’autre extrémité. Sachant que les brins d’ADN normalement synthétisés peuvent servir à leur tour comme nouveau support pour les mêmes séquences d’amorces, des cycles successifs de liaison des amorces, d’élongation des brins et de dissociation produisent une amplification rapide et hautement spécifique de la séquence désirée. La PCR peut aussi servir à détecter l’existence de séquences définies dans un échantillon d’ADN.

Recombinaison : Processus par lequel la descendance obtient une combinaison de gènes différents de ceux de chaque parent. Chez les organismes évolués, cela peut se produire lors d’un crossing over.
Réplication de l'ADN : Utilisation de l'ADN existant comme modèle pour la synthèse de nouveaux brins d'ADN. Chez les humains et autres eucaryotes, la réplication se produit dans le noyau de la cellule.

Séquencage : Détermination de l'ordre des nucléotides dans une molécule d'ADN ou d'ARN ou bien l'ordre des acides aminés dans une protéine.

Séquence d'ADN : Ordre relatif des paires de bases dans un fragment d'ADN, un gène, un chromosome ou un génome entier.

Séquences complémentaires : Séquences de bases nucléiques acides pouvant former une structure double-brin par appariement de paires de bases ; la séquence complémentaire de G-T-A-C est C-A-T-G.

Séquences conservées : Séquence de bases dans une molécule d'ADN (ou séquence d'acides aminés dans une protéine) qui est restée fondamentalement inchangée au cours de l'évolution.

Site marqué de séquence (SMS) : Courte séquence d'ADN, facilement localisable et amplifiée par les techniques de PCR, servant à identifier une localisation génomique physique.

SMS : Voir site marqué de séquence.

Sonde : Molécule d'ADN ou d'ARN simple-brin avec une séquence de bases spécifique, marquée de façon soit radioactive soit immunologique, servant à détecter la séquence des bases complémentaires par hybridation.

Technologies d'ADN recombinant : Procédure employée pour joindre des segments d'ADN dans un système sans cellule (un environnement hors d'une cellule ou d'un organisme). Avec des conditions appropriées, la molécule d'ADN recombinant peut entrer dans une cellule et s'y repliquer, soit de façon autonome, soit après s'être intégrée dans un chromosome cellulaire.

Technologies d'ingénierie génétique : Voir technologies d'ADN recombinant.

Thérapié génique humaine : Insertion d'ADN normal directement dans les cellules afin de corriger un défaut génétique.

Thymine (T) : Base nitrogèneuse, l'un des membres de la paire de bases A-T (adénine-thymine).

Transcription : Synthèse d'une copie d'ARN à partir d'une séquence d'ADN (un gène) ; c'est la première étape de l'expression d'un gène.

Traduction : Processus par lequel le code génétique porté par l'ARNm dirige la synthèse des protéines à partir des acides aminés.

Vector de clonage : Molécule d'ADN provenant d'un virus, d'un plasmide, ou de cellules d'organismes plus évolués dans laquelle un autre fragment d'ADN de taille adéquate peut être intégré sans perte de la capacité du vecteur à s'auto-répliquer ; les vecteurs introduisent de l'ADN étranger au sein de leur cellule hôte et il peut être reproduit en grandes quantités. Les plasmides, cosmides et les chromosomes artificiels de levure en sont des exemples ; les vecteurs sont souvent des molécules recombinantes contenant des séquences d'ADN de plusieurs sources.
<table>
<thead>
<tr>
<th>Sigle</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEDB</td>
<td>Base de données franco-britannique développée pour le projet C. elegans</td>
</tr>
<tr>
<td>ACOST</td>
<td>Conseil consultatif sur la science et la technologie (Royaume-Uni)</td>
</tr>
<tr>
<td>AIR</td>
<td>Programme agro-industriel (UE)</td>
</tr>
<tr>
<td>AJES</td>
<td>Aspects juridiques, étiques et sociaux du PGH</td>
</tr>
<tr>
<td>ASC</td>
<td>Atelier sur le chromosome (SCW)</td>
</tr>
<tr>
<td>BDG</td>
<td>Base de données sur le génome</td>
</tr>
<tr>
<td>BDGI</td>
<td>Base de données génomiques intégrée (UE)</td>
</tr>
<tr>
<td>BIOMED 1</td>
<td>Programme biomédical de recherche sur la santé (UE)</td>
</tr>
<tr>
<td>BIO/TECH</td>
<td>Programme agro-industriel (UE)</td>
</tr>
<tr>
<td>BRIDGE</td>
<td>Programme de biotechnologie (UE)</td>
</tr>
<tr>
<td>CAGT</td>
<td>Programme canadien d'analyse du génome et de la technologie</td>
</tr>
<tr>
<td>CCM</td>
<td>Réunion de coordination sur les chromosomes</td>
</tr>
<tr>
<td>CCS/SAC</td>
<td>Comité consultatif scientifique international (pour la BDG)</td>
</tr>
<tr>
<td>CEPH</td>
<td>Centre d'étude du polymorphisme humain (France)</td>
</tr>
<tr>
<td>CGH/HGM</td>
<td>Cartographie du génome humain</td>
</tr>
<tr>
<td>COGSM</td>
<td>Conseil pour les organisations internationales de sciences médicales</td>
</tr>
<tr>
<td>CIUS</td>
<td>Conseil international des unions scientifiques</td>
</tr>
<tr>
<td>CNRS</td>
<td>Centre national de la recherche scientifique (France)</td>
</tr>
<tr>
<td>CODATA</td>
<td>Comité sur les données pour la science et la technologie (CIUS)</td>
</tr>
<tr>
<td>DDBJ</td>
<td>Banque de données ADN du Japon</td>
</tr>
<tr>
<td>DOE</td>
<td>Département de l'énergie (Etats-Unis)</td>
</tr>
<tr>
<td>EBI</td>
<td>Institut européen de bio-informatique</td>
</tr>
<tr>
<td>EMBL</td>
<td>Laboratoire européen de biologie moléculaire</td>
</tr>
<tr>
<td>EUCER</td>
<td>Croisement en retour interspécifique en collaboration européenne</td>
</tr>
<tr>
<td>EUROGEM</td>
<td>Consortium de cartographie de liaison de deux centres de ressources (EU)</td>
</tr>
<tr>
<td>HGMP</td>
<td>Projet de cartographie du génome humain (Royaume-Uni)</td>
</tr>
<tr>
<td>HUGA</td>
<td>Usine de séquençage (Tsukuba, Japon)</td>
</tr>
<tr>
<td>HUGO</td>
<td>Organisation du génome humain</td>
</tr>
<tr>
<td>IAC</td>
<td>Comité d'administration international (pour la BDG)</td>
</tr>
<tr>
<td>ICRF</td>
<td>Fonds impérial pour la recherche sur le cancer (Royaume-Uni)</td>
</tr>
<tr>
<td>INSERM</td>
<td>Institut national de la santé et de la recherche médicale (France)</td>
</tr>
</tbody>
</table>

LANL | Laboratoire national de Los Alamos (États-Unis) |
LBNL | Laboratoire national Lawrence Berkeley (États-Unis) |
LLNL | Laboratoire national Lawrence Livermore (États-Unis) |
MSE | Marqueur exprimé de séquence |
MIT | Institut de technologie du Massachusetts (États-Unis) |
MNRF | Principales installations de recherche nationales (Australie) |
MRC | Conseil de la recherche médicale (Royaume-Uni) |
NCHGR | Centre national pour la recherche sur le génome humain (États-Unis) |
NHMRC | Conseil national de la santé et de la recherche médicale (Australie) |
NIH | Instituts nationaux de la santé (États-Unis) |
NRC | Conseil national de la recherche (États-Unis) |
OMS/WHO | Organisation mondiale de la santé |
OST | Office of Science and Technology (Royaume-Uni) |
OTA | Bureau de l'évaluation des technologies (États-Unis) |
PCR | Réaction de la polymérase en chaîne |
PGH/HGP | Projet sur le génome humain |
PI | Propriété intellectuelle |
SMS | Sites marqués de séquence |
STA | Agence de la science et de la technologie (Japon) |
TIGR | L'Institut pour la recherche génomique (États-Unis) |
UE | Union européenne |
UNESCO | Organisation éducative, scientifique et culturelle des Nations-Unies |